Vitamin d metabolism in children with stunted growth
Keywords:
vitamin D, growth, growth hormone, insulin-like growth factor 1, growth hormone deficiencyAbstract
Human growth is a complex interaction depending on genetic, environmental, nutritional and hormonal factors. The main hormone involved in growth at each developmental stage is growh hormone (GH) and its mediator, somatomedin, insulin-like growth factor 1 (IGF-1). Vitamin D is involved in the processes of bone growth and mineralization by regulating the metabolism of calcium and phosphorus. The article reviewed and analyzed clinical studies that show the relationship between vitamin D and the axis of GH/IGF-1 in the pediatric population. Vitamin D deficiency has been assessed in patients with GH deficiency, and a relationship between serum metabolites of vitamin D and IGF-1 has been identified. Based on the analysis of the literature, it can be assumed that in subjects suffering from somatotropic insufficiency, in most cases, vitamin D deficiency, which must be taken into account in therapy with recombinant growth hormone. Levels of GH and IGF-1 are more likely to be stabilized by additional treatment with vitamin D.References
Belaya ZhE, Belova KYu, Bordakova EV, Gilmanov AZh, Gurkina EYu. (2013).
Osteoporosis: treatment and prevention. Vitamin D in the therapy of osteoporosis: its role in combination with drugs for the treatment of osteoporosis, extra-skeletal events. Effektivnaya Farmakoterapiya. 38: 15.
Gromova OA, Troshin IYu, Spirichev VB. (2016). Genome-wide view of vitamin D receptor binding sites. Meditsinskiy Sovet. 1: 12–21. https://doi.org/10.21518/2079-701X-2016-1-12-21
Komisarenko YI, Kurchenko AI, Antonenko OV. (2014). Features of immunological and metabolic changes in patients with combined endocrine pathology amid insufficient vitamin D3. Mizhnarodnyi endokrynolohichnyi zhurnal. 3(59): 22–26.
Maltsev SV, Mansurova GSh. (2014). Vitamin D metabolism and ways of implementation of its basic functions. Practicheskaya Medicina. 9: 12–8.
Tronko MD, Bolshova ЕB. (Eds.). (2016). Somatotropic insufficiency. In: Clinical endocrinology of infancy and adolescence. Kyiv: TOV Biblioteka. Zdorovia Ukrainy: 9–25.
Shvarts GYa. (2015). Vitamin D renaissance: molecular biological, physiological and pharmacological aspects. Meditsinskiy sovet. 18: 102–110.
Ameri P, Giusti A, Boschetti M, Bovio M et al. (2013). Vitamin D increases circulating IGF1 in adults: potential implication for the treatment of GH deficiency. Eur J Endocrinol. 169(6): 767–72. https://doi.org/10.1530/EJE-13-0510; PMid:24005315
Ameri P, Giusti A, Boschetti M, Murialdo G et al. (2013). Interactions between vitamin D and IGF-I: from physiology to clinical practice. Clin Endocrinol. 79(4): 457–63. https://doi.org/10.1111/cen.12268; PMid:23789983
Antico A, Tampoia M, Tozzoli R, Bizzaro N. (2012). Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev. 12(2): 127–36. https://doi.org/10.1016/j.autrev.2012.07.007; PMid:22776787
Baron J, Savendahl L, De Luca F, Dauber A et al. (2015). Short and tall stature: a new paradigm emerges. Nat Rev Endocrinol. 11(12): 735–46. https://doi.org/10.1038/nrendo.2015.165; PMid:26437621 PMCid:PMC5002943
Bianda T, Glatz Y, Bouillon R, Froesch ER, Schmid C. (1998). Effects of short-term insulin-like growth factor-I (IGF-I) or growth hormone (GH) treatment on bone metabolism and on production of 1,25-dihydroxycholecalciferol in GH-deficient adults. J Clin Endocrinol Metab. 83(1): 81–7. https://doi.org/10.1210/jcem.83.1.4484; PMid:9435420
Bikle D. (2009). Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 94: 26–34. https://doi.org/10.1210/jc.2008-1454; PMid:18854395 PMCid:PMC2630868
Brown SD, Calvert HH, Fitzpatrick AM. (2012). Vitamin D and asthma. Dermatoendocrinol. 4(2): 137–145. https://doi.org/10.4161/derm.20434; PMid:22928069 PMCid:PMC3427192
Crowe FL, Key TJ, Allen NE, Appleby PN et al. (2009). The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiology Biomarkers & Prevention. 18: 1333–40. https://doi.org/10.1158/1055-9965.EPI-08-0781; PMid:19423514
Di Iorgi N, Morana G, Allegri AEM, Napoli F et al. (2016). Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract Res Clin Endocrinol Metab. 30(6): 705–36. https://doi.org/10.1016/j.beem.2016.11.008; PMid:27974186
Ding N, Yu RT, Subramaniam N, Sherman MH et al. (2013). A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 153(3): 601–13. https://doi.org/10.1016/j.cell.2013.03.028; PMid:23622244 PMCid:PMC3673534
Esposito S, Leonardi A, Lanciotti L, Cofini M et al. (2019). Vitamin D and growth hormone in children: a review of the current scientific knowledge. J Transl Med. 17: 87. https://doi.org/10.1186/s12967-019-1840-4; PMid:30885216 PMCid:PMC6421660
Gelander L, Karlberg J, Albertsson-Wikland K. (1994). Seasonality in lower leg length velocity in prepubertal children. Acta Paediatr. 83(12): 1249–54. https://doi.org/10.1111/j.1651-2227.1994.tb13006.x; PMid:7734863
Goltzman D. (2018). Functions of vitamin D in bone. Histochem Cell Biol. 149(4): 305–12. https://doi.org/10.1007/s00418-018-1648-y; PMid:29435763
Halhali A, Diaz L, Sanchez I, Garabedian M et al. (1999). Effects of IGF-I on 1,25-dihydroxyvitamin D3 synthesis by human placenta in culture. Molecular Human Reproduction. 5: 771–6. https://doi.org/10.1093/molehr/5.8.771; PMid:1042180
Heaney RP. (2008). Vitamin D in health and disease. Clinical Journal of American Society of Nephrology. 3: 1535–41. https://doi.org/10.2215/CJN.01160308; PMid:18525006 PMCid:PMC4571146
Henry HL. (2011). Regulation of vitamin D metabolism. Best Practice & Research Clinical Endocrinology & Metabolism. 25(4): 531–41. https://doi.org/10.1016/j.beem.2011.05.003; PMid:21872796
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM et al. (2011). Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 96(7): 1911–30. https://doi.org/10.1210/jc.2011-0385; PMid:21646368
Holick MF. (2012). Vitamin D: extraskeletal health. Rheum Dis Clin N Am. 38(1): 141–60. https://doi.org/10.1016/j.rdc.2012.03.013; PMid:22525849
Hossein-Nezhad A, Spira A, Holick MF. (2013). Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS ONE. 8(3): e58725. https://doi.org/10.1371/journal.pone.0058725; PMid:23527013 PMCid:PMC3604145
Kamenicky P, Blanchard A, Gauci C, Salenave S et al. (2012). Pathophysiology of renal calcium handling in acromegaly: what lies behind hypercalciuria? Journal of Clinical Endocrinology and Metabolism. 97: 2124–33. https://doi.org/10.1210/jc.2011-3188; PMid:22496496
Khundmiri SJ, Murray RD, Lederer E. (2016). PTH and vitamin D. Compr Physiol. 6: 561–601. https://doi.org/10.1002/cphy.c140071; PMid:27065162
Krishnan AV, Feldman D. (2011). Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol. 51(1): 311–36. https://doi.org/10.1146/annurev-pharmtox-010510-100611; PMid:20936945
Liao L, Chen X, Wang S. Parlow AF, Xu J. (2008). Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF*I) by controlling IGF-binding protein 3 expression. Molecular and Cellular Biology. 28: 2460–69. https://doi.org/10.1128/MCB.01163-07; PMid:18212051 PMCid:PMC2268437
Liu JL, Yakar S, LeRoith D. (2000). Conditional knockout of mouse insulin-like growth factor-1 gene using the Cre/loxP system. Proc Soc Exp Biol Med. 223(4): 344–51. https://doi.org/10.1046/j.1525-1373.2000.22349.x; PMid:10721003
Locatelli V, Bianchi VE. (2014). Effect of GH/IGF-1 on bone metabolism and osteoporsosis. Int J Endocrinol. 2014: 235060. https://doi.org/10.1155/2014/235060; PMid:25147565 PMCid:PMC4132406
Lombardi G, Di Somma C, Vuolo L, Guerra E et al. (2010). Role of IGF-I on PTH effects on bone. J Endocrinol Invest. 33(7): 22–6.
Munns CF, Shaw N, Kiely M, Specker BL et al. (2016). Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 101(2): 394–415. https://doi.org/10.1210/jc.2015-2175; PMid:26745253 PMCid:PMC4880117
Murray PG, Clayton PE. (2013). Endocrine control of growth. Am J Med Genet Part C Semin Med Genet. 163(2): 76–85. https://doi.org/10.1002/ajmg.c.31357; PMid:23613426
Norman AW. (2008). From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. American Journal of Clinical Nutrition. 88: 491S-9S. https://doi.org/10.1093/ajcn/88.2.491S; PMid:18689389
Pietras SM, Obayan BK, Cai MH, Holick MF. (2009). Vitamin D2 treatment for vitamin D deficiency and insufficiency for up to 6 years. Arch Intern Med. 169(19): 1806–8. https://doi.org/10.1001/archinternmed.2009.361; PMid:19858440
Reid IR, Bolland MJ. (2012). Role of vitamin D deficiency in cardiovascular disease. Heart. 98(8): 609–14. https://doi.org/10.1136/heartjnl-2011-301356; PMid:22373722
Rothermel J, Reinehr T. (2016). Metabolic alterations in paediatric GH deficiency. Best Pract Res Clin Endocrinol Metab. 30(6): 757–70. https://doi.org/10.1016/j.beem.2016.11.004; PMid:27974189
Saggese G, Vierucci F, Boot AM, Czech-Kowalska J et al. (2015). Vitamin D in childhood and adolescence: an expert position statement.Eur J Pediatr. 174(5): 565–76. https://doi.org/10.1007/s00431-015-2524-6; PMid:25833762
Seoane S, Perez-Fernandez R. (2006). The vitamin D receptor represses transcription of the pituitary transcription factor Pit-1 gene without involvement of the retinoid X receptor. Mol Endocrinol. 20(4): 735–48. https://doi.org/10.1210/me.2005-0253; PMid:16322098
Tengjiao C, Schally AV. (2018). Growth hormone-releasing hormone (GHRH) and its agonists inhibit hepatic and tumoral secretion of IGF-1. Oncotarget. 9(47): 28745–56. https://doi.org/10.18632/oncotarget.25676
Wierzbicka J, Piotrowska A, Zmijewski MA. (2014). The renaissance of vitamin D. Acta Biochim Pol. 61(4): 679–86. https://doi.org/10.18388/abp.2014_1830; PMid:25566549
Zimmermann EM, Li L, Hoyt EC, Pucilowska JB et al. (2000). Cell-specific localization of insulin-like growth factor binding protein mRNAs in rat liver. American Journal of Physiology Gastrointestinal and Liver Physiology. 278: G447–57. https://doi.org/10.1152/ajpgi.2000.278.3.G447; PMid:10712265
Issue
Section
License
The policy of the Journal “MODERN PEDIATRICS. UKRAINE” is compatible with the vast majority of funders' of open access and self-archiving policies. The journal provides immediate open access route being convinced that everyone – not only scientists - can benefit from research results, and publishes articles exclusively under open access distribution, with a Creative Commons Attribution-Noncommercial 4.0 international license (СС BY-NC).
Authors transfer the copyright to the Journal “MODERN PEDIATRICS. UKRAINE” when the manuscript is accepted for publication. Authors declare that this manuscript has not been published nor is under simultaneous consideration for publication elsewhere. After publication, the articles become freely available on-line to the public.
Readers have the right to use, distribute, and reproduce articles in any medium, provided the articles and the journal are properly cited.
The use of published materials for commercial purposes is strongly prohibited.