Vitamin d metabolism in children with stunted growth

Authors

  • O. V. Bolshova SI «V.P. Komisarenko Institute of Endocrinology and Metabolism NAMS of Ukraine », Kyiv, Ukraine https://orcid.org/0000-0003-1999-6031
  • M. O. Riznychuk Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine https://orcid.org/0000-0002-3632-2138
  • D. A. Kvachenuk SI «V.P. Komisarenko Institute of Endocrinology and Metabolism NAMS of Ukraine », Kyiv, Ukraine

Keywords:

vitamin D, growth, growth hormone, insulin-like growth factor 1, growth hormone deficiency

Abstract

Human growth is a complex interaction depending on genetic, environmental, nutritional and hormonal factors. The main hormone involved in growth at each developmental stage is growh hormone (GH) and its mediator, somatomedin, insulin-like growth factor 1 (IGF-1). Vitamin D is involved in the processes of bone growth and mineralization by regulating the metabolism of calcium and phosphorus. The article reviewed and analyzed clinical studies that show the relationship between vitamin D and the axis of GH/IGF-1 in the pediatric population. Vitamin D deficiency has been assessed in patients with GH deficiency, and a relationship between serum metabolites of vitamin D and IGF-1 has been identified. Based on the analysis of the literature, it can be assumed that in subjects suffering from somatotropic insufficiency, in most cases, vitamin D deficiency, which must be taken into account in therapy with recombinant growth hormone. Levels of GH and IGF-1 are more likely to be stabilized by additional treatment with vitamin D.

References

Belaya ZhE, Belova KYu, Bordakova EV, Gilmanov AZh, Gurkina EYu. (2013).

Osteoporosis: treatment and prevention. Vitamin D in the therapy of osteoporosis: its role in combination with drugs for the treatment of osteoporosis, extra-skeletal events. Effektivnaya Farmakoterapiya. 38: 15.

Gromova OA, Troshin IYu, Spirichev VB. (2016). Genome-wide view of vitamin D receptor binding sites. Meditsinskiy Sovet. 1: 12–21. https://doi.org/10.21518/2079-701X-2016-1-12-21

Komisarenko YI, Kurchenko AI, Antonenko OV. (2014). Features of immunological and metabolic changes in patients with combined endocrine pathology amid insufficient vitamin D3. Mizhnarodnyi endokrynolohichnyi zhurnal. 3(59): 22–26.

Maltsev SV, Mansurova GSh. (2014). Vitamin D metabolism and ways of implementation of its basic functions. Practicheskaya Medicina. 9: 12–8.

Tronko MD, Bolshova ЕB. (Eds.). (2016). Somatotropic insufficiency. In: Clinical endocrinology of infancy and adolescence. Kyiv: TOV Biblioteka. Zdorovia Ukrainy: 9–25.

Shvarts GYa. (2015). Vitamin D renaissance: molecular biological, physiological and pharmacological aspects. Meditsinskiy sovet. 18: 102–110.

Ameri P, Giusti A, Boschetti M, Bovio M et al. (2013). Vitamin D increases circulating IGF1 in adults: potential implication for the treatment of GH deficiency. Eur J Endocrinol. 169(6): 767–72. https://doi.org/10.1530/EJE-13-0510; PMid:24005315

Ameri P, Giusti A, Boschetti M, Murialdo G et al. (2013). Interactions between vitamin D and IGF-I: from physiology to clinical practice. Clin Endocrinol. 79(4): 457–63. https://doi.org/10.1111/cen.12268; PMid:23789983

Antico A, Tampoia M, Tozzoli R, Bizzaro N. (2012). Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev. 12(2): 127–36. https://doi.org/10.1016/j.autrev.2012.07.007; PMid:22776787

Baron J, Savendahl L, De Luca F, Dauber A et al. (2015). Short and tall stature: a new paradigm emerges. Nat Rev Endocrinol. 11(12): 735–46. https://doi.org/10.1038/nrendo.2015.165; PMid:26437621 PMCid:PMC5002943

Bianda T, Glatz Y, Bouillon R, Froesch ER, Schmid C. (1998). Effects of short-term insulin-like growth factor-I (IGF-I) or growth hormone (GH) treatment on bone metabolism and on production of 1,25-dihydroxycholecalciferol in GH-deficient adults. J Clin Endocrinol Metab. 83(1): 81–7. https://doi.org/10.1210/jcem.83.1.4484; PMid:9435420

Bikle D. (2009). Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 94: 26–34. https://doi.org/10.1210/jc.2008-1454; PMid:18854395 PMCid:PMC2630868

Brown SD, Calvert HH, Fitzpatrick AM. (2012). Vitamin D and asthma. Dermatoendocrinol. 4(2): 137–145. https://doi.org/10.4161/derm.20434; PMid:22928069 PMCid:PMC3427192

Crowe FL, Key TJ, Allen NE, Appleby PN et al. (2009). The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiology Biomarkers & Prevention. 18: 1333–40. https://doi.org/10.1158/1055-9965.EPI-08-0781; PMid:19423514

Di Iorgi N, Morana G, Allegri AEM, Napoli F et al. (2016). Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract Res Clin Endocrinol Metab. 30(6): 705–36. https://doi.org/10.1016/j.beem.2016.11.008; PMid:27974186

Ding N, Yu RT, Subramaniam N, Sherman MH et al. (2013). A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 153(3): 601–13. https://doi.org/10.1016/j.cell.2013.03.028; PMid:23622244 PMCid:PMC3673534

Esposito S, Leonardi A, Lanciotti L, Cofini M et al. (2019). Vitamin D and growth hormone in children: a review of the current scientific knowledge. J Transl Med. 17: 87. https://doi.org/10.1186/s12967-019-1840-4; PMid:30885216 PMCid:PMC6421660

Gelander L, Karlberg J, Albertsson-Wikland K. (1994). Seasonality in lower leg length velocity in prepubertal children. Acta Paediatr. 83(12): 1249–54. https://doi.org/10.1111/j.1651-2227.1994.tb13006.x; PMid:7734863

Goltzman D. (2018). Functions of vitamin D in bone. Histochem Cell Biol. 149(4): 305–12. https://doi.org/10.1007/s00418-018-1648-y; PMid:29435763

Halhali A, Diaz L, Sanchez I, Garabedian M et al. (1999). Effects of IGF-I on 1,25-dihydroxyvitamin D3 synthesis by human placenta in culture. Molecular Human Reproduction. 5: 771–6. https://doi.org/10.1093/molehr/5.8.771; PMid:1042180

Heaney RP. (2008). Vitamin D in health and disease. Clinical Journal of American Society of Nephrology. 3: 1535–41. https://doi.org/10.2215/CJN.01160308; PMid:18525006 PMCid:PMC4571146

Henry HL. (2011). Regulation of vitamin D metabolism. Best Practice & Research Clinical Endocrinology & Metabolism. 25(4): 531–41. https://doi.org/10.1016/j.beem.2011.05.003; PMid:21872796

Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM et al. (2011). Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 96(7): 1911–30. https://doi.org/10.1210/jc.2011-0385; PMid:21646368

Holick MF. (2012). Vitamin D: extraskeletal health. Rheum Dis Clin N Am. 38(1): 141–60. https://doi.org/10.1016/j.rdc.2012.03.013; PMid:22525849

Hossein-Nezhad A, Spira A, Holick MF. (2013). Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS ONE. 8(3): e58725. https://doi.org/10.1371/journal.pone.0058725; PMid:23527013 PMCid:PMC3604145

Kamenicky P, Blanchard A, Gauci C, Salenave S et al. (2012). Pathophysiology of renal calcium handling in acromegaly: what lies behind hypercalciuria? Journal of Clinical Endocrinology and Metabolism. 97: 2124–33. https://doi.org/10.1210/jc.2011-3188; PMid:22496496

Khundmiri SJ, Murray RD, Lederer E. (2016). PTH and vitamin D. Compr Physiol. 6: 561–601. https://doi.org/10.1002/cphy.c140071; PMid:27065162

Krishnan AV, Feldman D. (2011). Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol. 51(1): 311–36. https://doi.org/10.1146/annurev-pharmtox-010510-100611; PMid:20936945

Liao L, Chen X, Wang S. Parlow AF, Xu J. (2008). Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF*I) by controlling IGF-binding protein 3 expression. Molecular and Cellular Biology. 28: 2460–69. https://doi.org/10.1128/MCB.01163-07; PMid:18212051 PMCid:PMC2268437

Liu JL, Yakar S, LeRoith D. (2000). Conditional knockout of mouse insulin-like growth factor-1 gene using the Cre/loxP system. Proc Soc Exp Biol Med. 223(4): 344–51. https://doi.org/10.1046/j.1525-1373.2000.22349.x; PMid:10721003

Locatelli V, Bianchi VE. (2014). Effect of GH/IGF-1 on bone metabolism and osteoporsosis. Int J Endocrinol. 2014: 235060. https://doi.org/10.1155/2014/235060; PMid:25147565 PMCid:PMC4132406

Lombardi G, Di Somma C, Vuolo L, Guerra E et al. (2010). Role of IGF-I on PTH effects on bone. J Endocrinol Invest. 33(7): 22–6.

Munns CF, Shaw N, Kiely M, Specker BL et al. (2016). Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 101(2): 394–415. https://doi.org/10.1210/jc.2015-2175; PMid:26745253 PMCid:PMC4880117

Murray PG, Clayton PE. (2013). Endocrine control of growth. Am J Med Genet Part C Semin Med Genet. 163(2): 76–85. https://doi.org/10.1002/ajmg.c.31357; PMid:23613426

Norman AW. (2008). From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. American Journal of Clinical Nutrition. 88: 491S-9S. https://doi.org/10.1093/ajcn/88.2.491S; PMid:18689389

Pietras SM, Obayan BK, Cai MH, Holick MF. (2009). Vitamin D2 treatment for vitamin D deficiency and insufficiency for up to 6 years. Arch Intern Med. 169(19): 1806–8. https://doi.org/10.1001/archinternmed.2009.361; PMid:19858440

Reid IR, Bolland MJ. (2012). Role of vitamin D deficiency in cardiovascular disease. Heart. 98(8): 609–14. https://doi.org/10.1136/heartjnl-2011-301356; PMid:22373722

Rothermel J, Reinehr T. (2016). Metabolic alterations in paediatric GH deficiency. Best Pract Res Clin Endocrinol Metab. 30(6): 757–70. https://doi.org/10.1016/j.beem.2016.11.004; PMid:27974189

Saggese G, Vierucci F, Boot AM, Czech-Kowalska J et al. (2015). Vitamin D in childhood and adolescence: an expert position statement.Eur J Pediatr. 174(5): 565–76. https://doi.org/10.1007/s00431-015-2524-6; PMid:25833762

Seoane S, Perez-Fernandez R. (2006). The vitamin D receptor represses transcription of the pituitary transcription factor Pit-1 gene without involvement of the retinoid X receptor. Mol Endocrinol. 20(4): 735–48. https://doi.org/10.1210/me.2005-0253; PMid:16322098

Tengjiao C, Schally AV. (2018). Growth hormone-releasing hormone (GHRH) and its agonists inhibit hepatic and tumoral secretion of IGF-1. Oncotarget. 9(47): 28745–56. https://doi.org/10.18632/oncotarget.25676

Wierzbicka J, Piotrowska A, Zmijewski MA. (2014). The renaissance of vitamin D. Acta Biochim Pol. 61(4): 679–86. https://doi.org/10.18388/abp.2014_1830; PMid:25566549

Zimmermann EM, Li L, Hoyt EC, Pucilowska JB et al. (2000). Cell-specific localization of insulin-like growth factor binding protein mRNAs in rat liver. American Journal of Physiology Gastrointestinal and Liver Physiology. 278: G447–57. https://doi.org/10.1152/ajpgi.2000.278.3.G447; PMid:10712265