Chronic inflammatory bowel disease in children: modern invasive and non-invasive diagnosis

Authors

  • T. V. Sorokman Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine https://orcid.org/0000-0001-7615-3466
  • P. M. Moldovan Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine

Keywords:

chronic inflammatory bowel diseases, endoscopy, fecal and serological biomarkers

Abstract

A review of the scientific literature on current methods of diagnosis of chronic inflammatory bowel disease (CIBD) in children was conducted. A broad search strategy has been applied using the following search term: «chronic inflammatory bowel disease», «diagnostics», «endoscopy», «biomarkers», «fecal markers», using as search engines PubMed and Embase. Abstracts of 123 articles and 56 full-text articles of the last 15 years have been analyzed.
Diagnosis of CIBD causes some difficulties. The «golden standard» in the diagnostic algorithm remains the endoscopic methods, since they allow histological examination of biopsy samples. However, this invasive procedure, which usually requires patient sedation, causes discomfort and is relatively expensive. Other instrumental methods such as MRI and CT are relatively expensive, not always available and not always well tolerated by all patients. Fecal calprotectin and lactoferrin are the most proven biomarkers of intestinal inflammation. The role of cytokines performing pro- and anti-inflammatory functions is ongoing. From serological diagnostics, the biomarkers for the CIBD are ASCA and pANCA. In recent years, there have been other tokens that may appear to be better and provide additional information. These include other proteins, such as S100A12, M2-PK, polymorphonuclear elastase.

References

Bogdanos DP, Rigopoulou EI, Smyk DS et al. (2011). Diagnostic value, clinical utility and pathogenic significance of reactivity to the molecular targets of Crohn's disease specific;pancreatic autoantibodies. Autoimmun Rev.11: 143–8. https://doi.org/10.1016/j.autrev.2011.09.004; PMid:21983481.

Brown SR, Baraza W, Din S, Riley S. (2016). Chromoscopy versus conventional endoscopy for the detection of polyps in the colon and rectum. Cochrane Database of Systematic Reviews. 4: CD006439. https://doi.org/10.1002/14651858.CD006439.

Carroll MW, Kuenzig ME, Mack DR et al. (2019). The Impact of Inflammatory Bowel Disease in Canada 2018: Children and Adolescents with IBD. J Can Assoc Gastroenterol. 2(1): 49–67. https://doi.org/10.1093/jcag/gwy056; PMid:31294385 PMCid:PMC6512244.

Cotton JA, Platnich JM, Muruve DA et al. (2016). Interleukin-8 in gastrointestinal inflammation and malignancy: induction and clinical consequences. International Journal of Interferon, Cytokine and Mediator Research.8: 14–16. https://doi.org/10.2147/IJICMR.S63682.

Dotan I, Fishman S, Dgani Y et al. (2006). Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn's disease. Gastroenterology. 131: 366–78. https://doi.org/10.1053/j.gastro.2006.04.030; PMid:16890590.

Enns RA, Hookey L, Armstrong D et al. (2017). Clinical Practice Guidelines for the Use of Video Capsule Endoscopy. Gastroenterology. 152(3): 497–514. https://doi.org/10.1053/j.gastro.2016.12.032; PMid:28063287.

Escher M. Small intestinal capsule endoscopy: Recommendations and limitations of the new ESGE;guideline (2015). Dtsch Med Wochenschr.13: 140. https://doi.org/10.1055/s-0041-102450

Filip M, Iordache S, Saftoiu A, Ciurea T. (2011). Autofluorescence imaging and magnification endoscopy. World J Gastroenterol. 17(1): 9–14. https://doi.org/10.3748/wjg.v17.i1.9; PMid:21218078 PMCid:PMC3016686.

Flemming J, Cameron S. (2018). Small bowel capsule endoscopy Indications, results, and clinical benefit in a University environment. Medicine (Baltimore). 97(14): e0148. https://doi.org/10.1097/MD.0000000000010148; PMid:29620627 PMCid:PMC5902276.

Fonseca-Camarillo G, Yamamoto;Furusho JK. (2015). Immunoregulatory Pathways Involved in Inflammatory Bowel Disease. Inflamm Bowel Dis. 21(9):2188–93. https://doi.org/10.1097/MIB.0000000000000477; PMid:26111210.

Ishihara R. (2010). Infrared endoscopy in the diagnosis and treatment of early gastric cancer. Endoscopy. 42(8): 672–6. https://doi.org/10.1055/s-0029-1244205; PMid:20486079.

Johnson MW, Maestranzi S, Duffy AM et al. (2009). Faecal M2-pyruvate kinase: a novel, noninvasive marker of ileal pouch inflammation. Eur J Gastroenterol Hepatol. 21(5):544–50. https://doi.org/10.1097/MEG.0b013e3283040cb3; PMid:19300275.

Joossens S, Colombel JF, Landers C et al. (2006). Anti;outer membrane of porin C and anti-I2 antibodies in indeterminate colitis. Gut. 55: 1667–9. https://doi.org/10.1136/gut.2005.089623; PMid:16687433 PMCid:PMC1860125.

Khor B, Gardet A, Xavier RJ. (2011). Genetics and pathogenesis of inflammatory bowel disease. Nature.474: 307–17. https://doi.org/10.1038/nature10209; PMid:21677747 PMCid:PMC3204665.

Krystallis C, Koulaouzidis A, Douglas S, Plevris JN. (2001). Chromoendoscopy in small bowel capsule endoscopy: Blue mode or Fuji Intelligent Colour Enhancement? Digestive and Liver Disease. 43 (12): 953–957. https://doi.org/10.1016/j.dld.2011.07.018.

Lodes MJ, Cong Y, Elson CO et al. (2004). Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest.113:1296–1306. https://doi.org/10.1172/JCI20295; PMid:15124021 PMCid:PMC398429.

Morita FHA, Bernardo WM, Ide E et al. (2017). Narrow band imaging versus lugol chromoendoscopy to diagnose squamous cell carcinoma of the esophagus: asystematic review and meta;analysis. BMC Cancer. 17(1): 54. https://doi.org/10.1186/s12885-016-3011-9; PMid:28086818 PMCid:PMC5237308

Neumann H, Fujishiro M, Wilcox CM, Monkemuller K. (2017). Present and future perspectives of virtual chromoendoscopy with I-Scan and optical enhancement technology. Dig Endosc. 26(1): 43–51. https://doi.org/10.1111/den.12190; PMid:24373000

Norouzinia M, Chaleshi V, Alinaghi S et al. (2018). Evaluation of IL-12A, IL;12B, IL;23A and IL-27 mRNA expression level genes in peripheral mononuclear cells of inflammatory bowel disease patients in an Iranian population. Gastroenterol Hepatol Bed Bench.11: 45–52.

Norouzinia M, Chaleshi V, Alizadeh AHM, Zali MR. (2017). Biomarkers in inflammatory bowel diseases: insight into diagnosis, prognosis and treatment. Gastroenterol Hepatol Bed Bench. 10: 155–167.

Pennachi CMPS, Moura DTH, Amorim RBP et al. (2017). Lugol's iodine chromoendoscopy versus narrow band image enhanced endoscopy forthe detection of esophageal cancer in patients with stenosis secondary tocaustic/corrosive agent ingestion. ArqGastroenterol. 54(3): 250–254. https://doi.org/10.1590/s0004-2803.201700000-19; PMid:28492712

Rump JA, Scholmerich J, Gross V et al. (1990). A new type of perinuclear anti;neutrophil cytoplasmic antibody (p-ANCA) in active ulcerative colitis but not in Crohn's disease. Immunobiology. 181: 406–13. https://doi.org/10.1016/S0171-2985(11)80509-7.

Sherwood RA. (2012). Faecal markers of gastrointestinal inflammation. Clin Pathol. 65(11): 981;5. https://doi.org/10.1136/jclinpath-2012-200901; PMid:22813730.

Sonnenberg A. (2007). Time trends of ulcer mortality in Europe. Gastroenterology. 132: 2320–2327. https://doi.org/10.1053/j.gastro.2007.03.108; PMid:17570207.

Toedter GP, Blank M, Lang Y et al. (2009). Relationship of C;reactive protein with clinical response after therapy with ustekinumab in Crohn's disease. Am J Gastroenterol. 104: 2768–73. https://doi.org/10.1038/ajg.2009.454; PMid:19672253.

Turner D, Leach ST, Mack D et al. (2010). Faecal calprotectin, lactoferrin, M2-pyruvate kinase and S100A12 in severe ulcerative colitis: a prospective multicentre comparison of predicting outcomes and monitoring response. Gut. 59(9): 1207–12. https://doi.org/10.1136/gut.2010.211755; PMid:20801771.

Van den Bruel A, Jones C, Thompson M, Mant D. (2016). C-reactive protein point-of-care testing in acutely ill children: a mixed methods study in primary care. Arch Dis Child. 101(4): 382–5. https://doi.org/10.1136/archdischild-2015-309228; PMid:26757989.

Wang KK, Okoro N, Prasad G et al. (2011). Endoscopic Evaluation and Advanced Imaging of Barrett's Esophagus. Gastrointestinal Endoscopy Clinics of North America. 21(1): 39–51. https://doi.org/10.1016/j.giec.2010.09.013; PMid:21112496 PMCid:PMC3762455.

Wang Zhi Zhi, Shi KE, Peng JIE. (2017). Serologic testing of a panel of five antibodies in inflammatory bowel diseases: Diagnostic value and correlation with disease phenotype Biomedical Reports. 6: 401–410. https://doi.org/10.3892/br.2017.860; PMid:28413638 PMCid:PMC5374894.

Weidlich S, Bulau AM, Schwerd T et al. (2014). Intestinal expression of the anti-inflammatory interleukin-1 homologue IL-37 in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 59(2): e18–26. https://doi.org/10.1097/MPG.0000000000000387.

Weilert F, Binmoeller KF. (2017). New endoscopic technologies and procedural advances for endoscopic hemostasis. Clin Gastroenterol Hepatol. 14(9): 1234–1244. https://doi.org/10.1016/j.cgh.2016.05.020; PMid:27215365

Winderman R, Rabinowitz SS, Vaidy K, Schwarz SM. (2019). Measurement of Microvascular Function in Pediatric Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition. 68(5): 662–668. https://doi.org/10.1097/MPG.0000000000002252; PMid:30601366.

Wurster LM, Ginner L, Kumar A et al. (2018). Endoscopic optical coherence tomography with a flexible fiber bundle. J Biomed Opt. 23(6): 1–8. https://doi.org/10.1117/1.JBO.23.6.066001; PMid:29900706.

Xi Luo, Xiao;Xu Guo, Wei-Feng Wang et al. (2016). Autofluorescence imaging endoscopy can distinguish non;erosive reflux disease from functional heartburn: A pilot study. World J Gastroenterol. 22(14): 3845–3851. https://doi.org/10.3748/wjg.v22.i14.3845; PMid:27076770 PMCid:PMC4814748.

Yallace KL, Zheng LB, Kanazawa Y, Shih DQ. (2014). Immunopathology of inflammatory bowel disease. World J Gastroenterol. 20:6. https://doi.org/10.3748/wjg.v20.i1.6; PMid:24415853 PMCid:PMC3886033

Yamamoto T. (2014). The clinical value of faecal calprotectin and lactoferrin measurement in postoperative Crohn's disease. United European Gastroenterol. 3: 5–10. https://doi.org/10.1177/2050640614558106; PMid:25653853 PMCid:PMC4315679.

Yang Z, Clark N, Park KT. (2014). Effectiveness and cost-effectiveness of measurement of fecal calprotectin in the diagnosis of inflammatory bowel disease. Clin Gastroenterol Hepatol.12: 253–262. https://doi.org/10.1016/j.cgh.2013.06.028; PMid:23883663 PMCid:PMC3865226.

Yi F, Feng L, Wu J. (2017). Evaluation of fecal protein S100A12 in patients with inflammatory bowel disease. Medical Express. 4(3). Print version ISSN 2318–8111. https://doi.org/10.5935/MedicalExpress.2017.03.03.

You JY. (2018). Features and management of very early onset inflammatory bowel disease. Zhongguo Dang Dai Er Ke Za Zhi. 20(5): 341–345.

Yui S, Nakatani Y, Mikami M. (2013). Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis;inducing activity. Biol Pharm Bull. 26(6): 753–60. https://doi.org/10.1248/bpb.26.753; PMid:12808281.

Zhang Z, Li C, Zhao X et al. (2012). Anti-Saccharomyces cerevisiae antibodies associate with phenotypes and higher risk for surgery in Crohn's disease: a meta;analysis. Dig Dis Sci. 57: 2944–2954. https://doi.org/10.1007/s10620-012-2244-y; PMid:22669207.