To the question of neuroimmune mechanisms in the formation of perinatal brain damage

Authors

  • N. I. Lisyany SI «Romodanov Neurosurgery Institute National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine
  • T. K. Znamenska SI «Institute of Pediatrics, Obstetrics and Gynecology named after academician O. Lukyanova of the National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine
  • V. Yu. Martyniuk Shupyk National Medical Academy of Postgraduate Education, Kуiv, Ukraine, Ukraine
  • V. B. Shveikina SI «Institute of Pediatrics, Obstetrics and Gynecology named after academician O. Lukyanova of the National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine

Keywords:

newborn, brain, immunity, cytokines, microglial cells, ontogenesis

Abstract

The article is devoted to the urgent problem of neonatology, perinatal neurology and immunology, in particular neuroimmunology — to questions about the neuroimmune mechanisms of the formation of perinatal brain damage in newborns. The embryonic period of the development of the nervous system of the fetus is presented, which is characterized by the formation and maturation of the main links of non-specific and adaptive (specific) immunity. In particular, we form non-specific mechanisms of the resistance of the immune system, which play a major role in protecting the child's body in the early stages of ontogenesis. It was determined that the interaction of the immune and nervous systems is complex, starting from the induction of their afferent departments in the early stages of immunogenesis and ending with the subsequent activation of the efferent units of these systems. The basis of this interaction is the ability of cytokines to act as both an immunoregulator and a neuropeptide simultaneously. The contemporary literature data on the immunoprotected, neurotoxic, and neuroprotective functions of CNS microglial cells are highlighted. The origin and development of microglia is presented. The heterogeneity of these cells was analyzed, their physiological role in a healthy body, the monitoring of the activity of living neurons, and their response to pathological conditions are shown. Some literature data on the anti-inflammatory and remyelinating function of microglia and its humoral factors are presented. The article highlights the basic principles of the interaction of the nervous and immune systems, as well as some questions about the role of neuroimmune mechanisms in the formation of perinatal brain damage, it is indicated that, in the formation and progression of posthypoxic encepholopathy, the trigger factor is local inflammation with subsequent accumulation of antibodies and secondary alteration of the blood-brain barrier. Some literature data on the participation of neuroimmune mechanisms in the formation of cerebral palsy are presented. Mitosis, migration of neurons to the cortex and subcortical structures, as well as, which is very important in the period of ontogenesis, axonal synaptogenesis with target cells and the formation of functional systems are associated with the periventricular region. The predictability of pathological changes, in particular the periventricular region, is due to immunological imbalance. The interest in considering the cytokine system is explained by the involvement of these mediators of intercellular interaction in the pathogenesis of periventricular leukomalacia, as one of the main pathomorphological substrates in cerebral palsy in premature babies. The study of the population composition of immunocompetent cells, mediators of their intercellular interaction, and markers of the permeability of the blood-brain barrier in case of hypoxic-ischemic damage to the central nervous system of varying severity will highlight new links in the neuroimmune conflict in the pathogenesis of neurological disorders in newborns, in particular premature and young children.

References

Antipkin YuH, Kyrylova LH, Avramenko TV, Shevchenko OA. (2015). Vrodzheni vady rozvytku TSNS: suchasnyy stan problemy, kliniko-nevrolohichni osoblyvosti i pytannya optymizatsiyi prenatal’noyi diahnostyky. Zhurnal Natsional’noyi akademiyi medychnykh nauk Ukrayiny. 2(21): 201—214.

Barashnev YuI. (2001). Perinatal'naya nevrologiya. 2;e izd., dop. Moskow: Triada: 672.

Belikova ME. (2008). Infektsionno-vospalitel'naya patologiya u novorozhdennykh s perinatal'nymi porazheniyami tsentral'noy nervnoy sistemy: immunologicheskiye mekhanizmy yeye razvitiya, prognozirovaniye, profilaktika, korrektsiya: avtoref. dis. … d-ra med. nauk: 14.00.09. Ivanovo: 38.

Blinov DV. (2004). Immunofermentnyy analiz neyrospetsificheskikh antigenov v otsenke pronitsayemosti gematoentsefalicheskogo bar'yera pri gipoksicheski;ishemicheskikh porazheniyakh TSNS v perinatal'nom periode (kliniko-eksperimental'noye issledovaniye): dis. … k-ta med. nauk: 03.00.04, 14.00.09. Moskow: 153.

Bobova LP, Kuznetsov SL, Saprykin VP. (2003). Gistofiziologiya krovi i organov krovetvoreniya i immunogeneza: Uchebn. posobiye. Moskow: Novaya Volna: 155.

Vaynshteyn NP. (2009). Kliniko-immunokhimicheskaya otsenka pronitsayemosti gematoentsefalicheskogo bar'yera novorozhdennykh iz dvoyen, rodivshikhsya posle primeneniya vspomogatel'nykh reproduktivnykh tekhnologiy. Avtoref. dis. … kand. med. nauk: 14.00.09. Moskow: 26.

Volodin NN. (2014). Neonatologiya: Natsional'noye rukovodstvo. Kratkoye izdaniye. Moskow: GEOTAR-Media: 896.

Gomazkov OA. (2006). Neyrotroficheskaya regulyatsiya i stvolovyye kletki mozga. Moskow: IKAR: 332.

Devid LF, Kerri MO, Sammo MM. (2018). Nevrologiya. Atlas s illyustratsiyami Nettera. Per. s angl. 7-e. izd. Moskow: Izdatel'stvo Panfilova: 400.

Yevtushenko SK, Yanovskaya NV, Sukhonosova OYu. (2016). Nevrolohyya ranneho detskoho vozrasta. Kiev: ID: Zaslavskyy AYu: 288.

Znamenska TK, Nikulina LI, Rudenko NH, Vorobyova OV. (2017). Analiz roboty perynatal’nykh tsentriv u vikhodzhuvanni peredchasno narodzhennya ditey v Ukrayini. Neonatolohiya, khirurhiya ta perynatal’na medytsyna. T.VII: 2(23): 5–11.

Znamenska TK, Vorobyova OV, Dubinina TYu. (2018). Stratehichni napryamky rekonstruktsiyi systemy okhorony zdorov'ya novonarodzhenykh ta ditey Ukrayiny. Sotsial’na pediatriya ta reabilitolohiya. 1–2 (13–14): 7–14.

Kirilova LG, Martynenko YaA. (2015). Modern aspects of the pathogenesis of brain damage in extremely low birth weight infants. Perinatologiya i pediatriya. 4(64): 64–68. https://doi.org/10.15574/PP.2015.64.64.

Kornev MA, Petrova TB. (2000). Development and age-related changes in the organs of the human immune system: Textbook. – method. allowance. The number of health care Ros. Federation. St. Petersburg state pediatrician. honey. Acad. SPb: GPMA: 18.

Kryzhanovsky GN, Magaeva SV, Makarov SV, Sepiashvili RI. (2003). Neuroimmunopathology: a guide. Moscow: Publishing House of the Research Institute of General Pathology and Pathophysiology: rukovodstvo. Moskow: Izd-vo NII obshchey patologii i patofiziologii: 438.

Lisyany NI. (1999). Immunnaya sistema golovnogo mozga. Kiev: 216.

Markova YeV. (2011). Kletochnyye mekhanizmy neyroimmunnykh vzaimodeystviy v realizatsii oriyentirovochno;issledovatel'skogo povedeniya: dis. … d-ra med. nauk: 14.03.09. Novosibirsk: 231.

Martyniuk VYu. (2016). Osnovy sotsial’noyi pediatriyi: Navchal’no-metodychnyy posibnyk: u 2 t. Kyiv: FOP Veres OI. 1: 479.

Moiseyenko RO, Hoyda NH, Dudina OO. (2018). Dytyacha invalidnist’ ta pytannya rozbudovy systemy medyko-sotsial’noyi reabilitatsiyi ditey v Ukrayini. Sotsial’na pediatriya ta reabilitolohiya. 3–4 (15–16): 10–19.

Mtui E, Gryuner G, Dokeri P. (2018). Klinicheskaya neyroanatomiya i nevrologiya po Fitsdzheral'du. Per. s angl. 7-e izd. Moskow: Izdatel'stvo Panfilova: 400.

Nikolls Dzh G, Martin AR, Vallas B Dzh, Fuks PA. (2017). Ot neyrona k mozgu. Per. s angl. 4-e izd. Moskow: LIBROKOM: 672.

Osipova NA. (2014). Klinicheskoye znacheniye issledovaniya urovnya regulyatornykh autoantitel pri preeklampsii: dis. … kand. med. nauk: 14.01.01. Moskow: 135.

Pal'chik AB, Shabalov NP. (2013). Gipoksicheski;ishemicheskaya entsefalopatiya novorozhdennykh. Moskow: MEDpress-inform: 288.

Postnova MV. (2014). Fiziologicheskiye mekhanizmy individual'noy organizatsii gomeostaza organizma: dis. … d-ra biol. nauk: 03.03.01. Volgograd: 336.

Ryabukhin IA. (2004). Neyrospetsificheskiye belki v otsenke pronitsayemosti gematoentsefalicheskogo bar'yera cheloveka i zhivotnykh: dis. … d-ra med. nauk: 03.00.04. Moskow: 297.

Semenov AS, Skal'nyy AV. (2009). Immunopatologicheskiye i patobiokhimicheskiye aspekty patogeneza perinatal'nogo porazheniya mozga. SPb: Nauka: 368.

Semenova KA. (2007). Vosstanovitel'noye lecheniye detey s perinatal'nymi porazheniyami nervnoy sistemy i detskim tserebral'nym paralichom. Moskow: Zakon i poryadok: 616.

Turina OI. (2005). Monoklonal'nyye antitela k neyrospetsificheskim antigenam. Polucheniye, immunokhimicheskiy analiz, issledovaniye pronitsayemosti gematoentsefalicheskogo bar'yera: dis. … d-ra med. nauk. Moskow: 269.

Khaitov RM. (2013). Immunologiya. Struktura i funktsii immunnoy sistemy: uchebnoye posobiye. — Moskow: GEOTAR-Media: 280.

Kharchenko YeP. (2006). Immunnaya privilegiya mozga: novyye fakty i problemy. Immunologiya. 1(27): 51–56.

Chernishova LI, Volokha AP, Kostyuchenko LV. (2013). Dityacha imunologiya. Kyiv: VSV Meditsina: 720.

Chekhonin VP, Lebedev SV, Blinov DV. (2004). Patogeneticheskaya rol' narusheniya pronitsayemosti gematoentsefalicheskogo bar'yera dlya neyrospetsificheskikh belkov pri perinatal'nykh gipoksicheski;ishemicheskikh porazheniyakh TSNC. Voprosy ginekologii, akusherstva i perinatologii. 3(2): 50—56 .

Chistyakova GN. (2005). Immunnyye mekhanizmy razvitiya perinatal'noy patologii: dis. … d-ra med. nauk: 14.00.3. Chelyabinsk: 369.

Shevchenko AV. (2015). Immunogeneticheskiy analiz polimorfizma genov tsitokinov, matrichnykh metalloproteinaz i faktora rosta endoteliya sosudov pri ryade mul'tifaktorial'nykh zabolevaniy: dis. … d;ra biol. nauk: 14.03.09. Novosibirsk: 41.

Sheyn SA. (2012). Monoklonalinye antytela k faktoru rosta endotelyya sosudov kak vektory dlya dostavky konteynernykh system v yntrakranyal’nuyu hlyomu S6: avtoref. dys. … kand. byol. nauk: 03.01.04. Moskow: 25.

Shun’ko YeYe. (2002). Rol’ TNF-α, IL-1β ta IL6 u hipoksychno-ishemichnomu urazhenni tsentral’noyi nervovoyi systemy novonarodzhenykh. Pediatriya, akusherstvo ta hinekolohiya. 1: 15—18.

Yarylyn AA. (2010). Ymmunolohyya. Moskow: HEOTAR-Medya: 752.

Abbot NJ, Ronnback L, Hansson EA. (2006). Astrocyte-endothelial interactions at the blood-brain barrer. Nat. Rev. Neurosci. 7(1): 41—53. https://doi.org/10.1038/nrn1824; PMid:16371949

Adelson JD, Barreto GE, Xu L. (2012). Neuroprotection from stroke in the absence of MHCI or PirB. Neuron. 73(6): 1100—1107. https://doi.org/10.1016/j.neuron.2012.01.020; PMid:22445338 PMCid:PMC3314229

Ader R. (2007). Phychoneuroimmunology. Chicago: University of Chicago Press. I: 1269.

Allans S. (2006). The neurovascular unit and the key role of astrocytes in the regulation of cerebral blood flow. Cerebrovasc. Dis. 21(1—2): 137—138. https://doi.org/10.1159/000090447; PMid:16374001

Antoine Louveau, Tajie H Harris, Jonathan Kipnis. (2015). Revisiting the Mechanisms of CNS Immune Privilege. Trends in Immunology. 36(10): 569—577. https://doi.org/10.1016/j.it.2015.08.006; PMid:26431936 PMCid:PMC4593064.

Barclay JL, Tsang AH, Oster H. (2012). Interaction of central and peripheral clocks in physiological regulation. Prog. Brain Res. 199: 163–181. https://doi.org/10.1016/B978-0-444-59427-3.00030-7; PMid:22877665.

Blalock JE. (2005). The immune system as the sixth sense. J Intern Med. 257(2): 126—138. https://doi.org/10.1111/j.1365-2796.2004.01441.x; PMid:15656872.

Bodensteiner JB, Johnsen SD. (2005).Cerebellar injury in the extremely premature infant: newly recognized but relatively common outcome. Child Neurol. 20: 39—142. https://doi.org/10.1177/08830738050200021101; PMid:15794181

Brea D, Sorbino T, Ramos;Cabrer P. (2009). Inflammatory and Neuroim; munomodulatory Changes in Acute Cerebral Ishemia. Cerebrovasc. Dis. 27(1): 48—64. https://doi.org/10.1159/000200441; PMid:19342833

Bucker JH. (2010). Mechnisms of impared regulation by CD4 + CD25 + FOXp3 + regulatory T cells in human autoummune diseases. Nat Rev Immunol. 10(12): 849—859. https://doi.org/10.1038/nri2889; PMid:21107346 PMCid:PMC3046807.

Calliope A Dendrou, Lars Fugger, Manuel A Friese. (2015). Immunopathology of multiple sclerosis. Nat Rev Immunol. 15: 545—558. https://doi.org/10.1038/nri3871; PMid:26250739

Cans C, McManus V, Crowley M. (2009). Cerebral palsy of post-neonatal orgin: characteristics and factors. Paediatr Perinat Epidemiol. 18(3): 214–220. https://doi.org/10.1111/j.1365-3016.2004.00559.x; PMid:15130161.

Castellаnos M, Sorbino T, Millan M. (2007). Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytical therapy in acute ischemic stroke: a multicenter confirmatory stady. Stroke. 38(6): 1855—1859. https://doi.org/10.1161/STROKEAHA.106.481556; PMid:17478737.

Cassie S, Masterson MF, Polukoshko F, Viskovic MM, Tibbles LA. (2004). Ishemia / reperfusion inducens the recruitment of leukocytes from whole blood under flow conditions. Free Radic Biol Med. 1; 36(9): 1102—1111. https://doi.org/10.1016/j.freeradbiomed.2004.02.007; PMid:15082064.

Davalos D, Grutzendler J, Yang G, Kim JV et al. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8(6): 752—758. https://doi.org/10.1038/nn1472; PMid:15895084.

Deng W, Pleasure J, Pleasure D. (2008). Progress in periventricular leukomalacia. Arch Neurol. 65(10): 1291—1295. https://doi.org/10.1001/archneur.65.10.1291; PMid:18852342 PMCid:PMC2898886.

Ding AH, Nathan CF, Stuehr DJ. (1988). Release of reactive nitrogen intermediates and reactive oxygenintermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence forindependent production. J Immunol. 1;141(7): 2407—2412.

de Groot JC, de Leeuw FE and Oudkerk M et al. (2002). Periventricular white matter lesions predict rate of cognitive decline. Ann Neurol. 52(3): 335—341. https://doi.org/10.1002/ana.10294; PMid:12205646.

El-Khoury N, Braun A, Hu F. (2006). Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 59(5): 673—679. https://doi.org/10.1203/01.pdr.0000214975.85311.9c; PMid:16627880.

Fatemi AH, Wilson Mary Ann, Johnston Michael V. (2009). Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol. 36(4): 835—58. https://doi.org/10.1016/j.clp.2009.07.011; PMid:19944838 PMCid:PMC2849741

Folkerth RD. (2011). Germinal matrix haemorrhage: destroying the brain's bulding blocks. Brain. 134(5): 1261—1263. https://doi.org/10.1093/brain/awr078; PMid:21596767.

Fong JS, Rae;Grant A, Huang D. (2008). Neurodegeration and neuroprotective agents in multiple sclerosis. Recent Pat CNS Drug Discow. 3(3): 153—165. https://doi.org/10.2174/157488908786242498; PMid:18991805

Ford AL, Goodsall AL, Hickey WF, Sedgwick JD. (1995). Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein ;reactive CD4 + T cells compared. J Immunol. 154(9): 4309—4321.61.

Gomez-Nicola D, Perry VH. (2015). Microglial dynamics and role in the healthy and diseased brain: A paradigm of functional plasticity. Neuroscientist. 21(2): 169—184. https://doi.org/10.1177/1073858414530512; PMid:24722525 PMCid:PMC4412879. https://www.ncbi.nlm.nih.gov › pubmed.

Gordon S. (2003). Alternative activation of macrophages. Nat Rev Immunol. 3(1): 23—35. https://doi.org/10.1038/nri978; PMid:12511873.

Gibson NJ. (2011). Cell adhesion molecules in context: CAM function depends on the neighborhood. Cell Adh Migr. 5(1): 48—51. https://doi.org/10.4161/cam.5.1.13639; PMid:20948304 PMCid:PMC3038097.

Hanisch UK, Kettenmann H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience. 10(11): 1387—1394. https://doi.org/10.1038/nn1997; PMid:17965659.

Hemminki K, Li X, Sundquist K, Sundquist J. (2007). Hight familial risks for cerebral palsy implicate partial heritabl aetiology. Pediatr Perinat Epidemiol. 21(3): 235—241. https://doi.org/10.1111/j.1365-3016.2007.00798.x; PMid:17439532.

Hiippi PS, Dubois J. (2006). Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med. 1(6): 489—497. https://doi.org/10.1016/j.siny.2006.07.006; PMid:16962837.

Himanshu Kumar, Taro Kawai, Shizuo Akira. (2011). Pathogen Recognition by the Innate Immune System. Int Rev Immunol. 30(1): 16—34. https://doi.org/10.3109/08830185.2010.529976; PMid:21235323.

Iadecola C, Anrather J. (2011). The immunology of stroke: from mechanisms to translation. Nat Med. 17(7): 796—808. https://doi.org/10.1038/nm.2399; PMid:21738161 PMCid:PMC3137275.

Iliff JJ, Nedergaard M. (2013). Is there a cerebral lymphatic system? Stroke. 44(6): 93—95. https://doi.org/10.1161/STROKEAHA.112.678698; PMid:23709744 PMCid:PMC3699410.

Iliff JJ, Wang M, Liao Y et al. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 15;4(147): 147ra111. https://doi.org/10.1126/scitranslmed.3003748; PMid:22896675 PMCid:PMC3551275.

Imms C. (2008). Children with cerebral palsy participate: a review of the literature. Disabil. Rehbil. 11/30. 30(24): 1867—1884. https://doi.org/10.1080/09638280701673542; PMid:19037780

Inoue K. (2008). Purinergic systems in microglia. Cellular and Molecular Life Sciences. 65(19): 3074—3080. Retrieved from. https://doi.org/10.1007/s00018-008-8210-3; PMid:18563292

Kendall G, Peebles D. (2005). Acute fetal hypoxia: the modulating effect of infection. Early Hum Dev. 81(1): 27—34. https://doi.org/10.1016/j.earlhumdev.2004.10.012; PMid:15707712.

Laptook A, Tyson J, Shankaran S et al. (2008). Elevated temperature after hypoxicischemic encephalopathy: risk factor for adverse outcomes. Pediatrics. 122(3): 491—499. https://doi.org/10.1542/peds.2007-1673; PMid:18762517 PMCid:PMC2782681.

Levene MI, Chervenak FA. (2009). Fetal and Neonatal Neurology and Neurosurgery. Elsevier Health Sciences: 921.

Ludger Klein, Bruno Kyewski, Paul M Allen, Kristin A Hogquist. (2014). Positive and negative selection of the T cell repertoire : what thymocytes see (and do not see). Nat Rev Immunol. 14(6): 377—391. https://doi.org/10.1038/nri3667; PMid:24830344 PMCid:PMC4757912. Epub 2014 May 16.

Martinez FO, Sica A, Mantovani A, Locati M. (2008). Macrophage activation and polarization. Front Biosci. 1;13: 453—461. https://doi.org/10.2741/2692; PMid:17981560.

Masuch A, Shieh CH, van Rooijen N, van Calker D, Biber K. (2016). Mechanism of microglia neuroprotection: Involvement of P2X7, TNFα, and valproic acid.Glia. 64(1): 76—89. 64(1): 76-89. https://doi.org/10.1002/glia.22904.

Mosser DM, Edwards JP. (2008). Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8(12): 958—969. https://doi.org/10.1038/nri2448; PMid:19029990 PMCid:PMC2724991.

Murtha LA, Yang Q, Parsons MW et al. (2014). Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive r ats. Fluids Barriers CNS. 6;11: 12. https://doi.org/10.1186/2045-8118-11-12; PMCid:PMC4057524.

Narase T, Yamazaki T, Oqura N et al. (2008). The impact of inflammation on the pathogenesis and prognosis of ischemic stroke J Neurol Sci. 271(1—2): 104—109. https://doi.org/10.1016/j.jns.2008.03.020; PMid:18479710.

Nimmerjahn A, Kirchhoff F, Helmchen F. (2005). Resting microglial cells are highly dynamic surveillants of brainparenchyma in vivo. Science. 27; 308(5726): 1314—1318. https://doi.org/10.1126/science.1110647; PMid:15831717.

Callaghan ME, MacLennan AH, Gibson CS et al. (2013). Genetic and clinical contributions to cerebral palsy: a multivariable analysis. J Pediatr Child Health. 49(7): 575—581. https://doi.org/10.1111/jpc.12279; PMid:23773706.

Ohsawa K, Sanagi T, Nakamura Y et al. (2012). Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem. 121(2): 217—227. https://doi.org/10.1111/j.1471-4159.2012.07693.x; PMid:22335470. Epub 2012 Mar 14.

Orr A, Orr AL, Li X et al. (2009). Adenosine A2A receptor mediates microglial process retraction. Nat Neurosci. 12(7): 872—878. https://doi.org/10.1038/nn.2341; PMid:19525944 PMCid:PMC2712729.

Paneth N. (2008). Establishing the diagnosis of cerebral palsy. Clin Obstet Gynecol. 51(4): 742—748. https://doi.org/10.1097/GRF.0b013e318187081a; PMid:18981799.

Quan N, Banks WA. (2007). Brain;immune communication pathways. 21(6): 727—735. https://doi.org/10.1016/j.bbi.2007.05.005; PMid:17604598.

Ransohoff RM, Brown MA. (2012). Innate immunity in the central nervous system. J Clin Invest. 122(4): 1164—1171. https://doi.org/10.1172/JCI58644; PMid:22466658 PMCid:PMC3314450.

Streit WJ. (2001). Microglia and macrophages in the developing CNS. Neurotoxicology. 22(5): 619—624. Retrieved from https://www.ncbi.nlm.nih.gov›pubmed. https://doi.org/10.1016/S0161-813X(01)00033-X

Streit WJ. (2006). Microglial senescence: does the brain's immune system have an expiration date? Trends Neuroscі. 29(9): 506–510. https://doi.org/10.1016/j.tins.2006.07.001; PMid:16859761.

Thompson K, Tsirka S. (2017). The Diverse Roles of Microglia in the Neurodegenerative Aspects of Central NervousSystem (CNS) Autoimmunity. Int J Mol Sci. 18(3): 505–525. https://doi.org/10.3390/ijms18030504; PMid:28245617 PMCid:PMC5372520.

Tremblay M, Zettel ML, Ison JR et al. (2012). Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia. 60(4): 541–558. https://doi.org/10.1002/glia.22287; PMid:22223464 PMCid:PMC3276747.

Tremblay M, Lowery RL, Majewska AK. (2010). Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2;8(11): e1000527. https://doi.org/10.1371/journal.pbio.1000527; PMid:21072242 PMCid:PMC2970556.

Tyson JE, Parikh NA, Langer J, Green C, Higgins RD. (2008). Intensive care for extreme prematurity — moving beyond gestational age. N Engl J Med. 358 (16): 1672–1681. https://doi.org/10.1056/NEJMoa073059; PMid:18420500 PMCid:PMC2597069.

Ukpong B Eyo, Long;Jun Wu. (2013). Bidirectional Microglia;Neuron Communication in the Healthy Brain. Neural Plasticity. Article ID 456857: 10. https://doi.org/10.1155/2013/456857; PMid:24078884 PMCid:PMC3775394.

Volpe JJ. (2008). Neurology of the newborn. 5th: Saunders Elsevier: 1120.

Von Bernhardi R. (2007). Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox. Res. 12: 215–232. https://doi.org/10.1007/BF03033906; PMid:18201950

Wolf SA, Boddeke HW, Kettenmann H. (2017). Microglia in Physiology and Disease. Annual Review of Physiology. 79(1): 619–643. https://doi.org/10.1146/annurev-physiol-022516-034406; PMid:27959620.