Novel mutations in the PIEZO1 gene in hereditary stomatocytosis: a severe case of anaemia and hepatosplenomegaly

Authors

DOI:

https://doi.org/10.15574/SP.2025.4(148).138152

Keywords:

dehydrated hereditary stomatocytosis, anaemia, hepatosplenomegaly, gene mutations, PIEZO1 c.5590C>T (p.Arg 1864Cys) and c.76C>T (p.Arg26Cys), children

Abstract

Dehydrating hereditary stomatocytosis (DHS) is a rare hereditary haemolytic anaemia inherited in an autosomal dominant pattern, characterised by macrocytosis, the presence of stomatocytes and erythrocyte dehydration. The disease is based on increased permeability of erythrocyte membranes due to certain genetic defects (missense mutations in the PIEZO1 and KCNN4 genes), which causes an imbalance in intracellular cation concentrations. The disease has variable clinical manifestations, which complicates its timely diagnosis.

Aim - to describe a clinical case of DHS1 caused by two novel variants in the PIEZO1 gene c.5590C>T (p.Arg 1864Cys) and c.76C>T (p.Arg26Cys) in a 5-year-old girl with transfusion-dependent anaemia, massive hepatosplenomegaly and psychophysical developmental delay.

Clinical case. The girl has been ill since birth. Increased abdominal size, hepatosplenomegaly and decreased blood counts were first noticed at the age of 7 months. Severe anaemia was controlled by haemotransfusions. The initial pathological bone marrows (ВМ) examination diagnosed reticulin myelofibrosis. Multidisciplinary genetic tests were performed. Carriers without clinical significance were found epidermolysis bullosa (COL7A1 gene) and nephronoptosis (NPHP1 gene). NGS (Next-Generation Sequencing), a panel of hereditary anaemias, identified mutations c.5590C>T (p.Arg 1864Cys) and c.76 C>T (p.Arg26Cys) in the PIEZO1 gene, in combination with clinical and laboratory changes was diagnosed DHS1.

Conclusions. DHS1 in children is a rare disease that can have a severe clinical course and cause significant diagnostic difficulties. The presence of two mutation variants in the PIEZO1 gene: c.5590C>T (p.Arg1864Cys) and c.76C>T (p.Arg26Cys) can aggravate the disease. Visual assessment of blood smear and NGS are important methods for the diagnosis of hereditary anaemias.

The research was carried out in accordance with the principles of the Helsinki Declaration. The informed consent of the patient was obtained for conducting the studies.

No conflict of interests was declared by the authors.

Author Biographies

O.I. Dorosh, СNE of Lviv Regional Council «Western Ukrainian Specialized Pediatric Medical Centre»

Danylo Halytsky Lviv National Medical University, Ukraine

N.S. Trofimova, National Specialized Children's Hospital 'OHMATDYT' of the Ministry of Health of Ukraine, Kyiv

SI "National Scientific Center 'The M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine' of the NAMS of Ukraine", Kyiv, Ukraine

A.S. Kuzyk, СNE of Lviv Regional Council «Western Ukrainian Specialized Pediatric Medical Centre»

Danylo Halytsky Lviv National Medical University, Ukraine

R.P. Kozak, СNE of Lviv Regional Council «Western Ukrainian Specialized Pediatric Medical Centre»

PLC «St. Paraskeva Medical Center», Lviv, Ukraine

References

Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J et al. (2013). Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun. 4: 1884. doi: 10.1038/ncomms2899. Erratum in: Nat Commun. 4: 2440. PMID: 23695678; PMCID: PMC3674779. https://doi.org/10.1038/ncomms3440

Andolfo I, Alper SL, De Franceschi L, Auriemma C, Russo R, De Falco L et al. (2013). Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood. 121(19): 3925-3935, S1-12. Epub 2013 Mar 11. https://doi.org/10.1182/blood-2013-02-482489; PMid:23479567

Andolfo I, Manna F, De Rosa G, Rosato BE, Gambale A, Tomaiuolo G et al. (2018). PIEZO1-R1864H rare variant accounts for a genetic phenotype-modifier role in dehydrated hereditary stomatocytosis. Haematologica. 103(3): e94-e97. Epub 2017 Nov 30. https://doi.org/10.3324/haematol.2017.180687; PMid:29191841 PMCid:PMC5830381

Andolfo I, Martone S, Rosato BE, Marra R, Gambale A, Forni GL et al. (2021). Complex Modes of Inheritance in Hereditary Red Blood Cell Disorders: A Case Series Study of 155 Patients. Genes (Basel). 12(7): 958. https://doi.org/10.3390/genes12070958; PMid:34201899 PMCid:PMC8304671

Andolfo I, Rosato BE, Manna F, De Rosa G, Marra R, Gambale A et al. (2020). Gain-of-function mutations in PIEZO1 directly impair hepatic iron metabolism via the inhibition of the BMP/SMADs pathway. Am J Hematol. 95(2): 188-197. Epub 2019 Dec 9. https://doi.org/10.1002/ajh.25683; PMid:31737919

Andolfo I, Russo R, Gambale A, Iolascon A. (2016). New insights on hereditary erythrocyte membrane defects. Haematologica. 101(11): 1284-1294. Epub 2016 Oct 18. https://doi.org/10.3324/haematol.2016.142463; PMid:27756835 PMCid:PMC5394881

Andolfo I, Russo R, Gambale A, Iolascon A. (2018). Hereditary stomatocytosis: An underdiagnosed condition. Am J Hematol. 93(1): 107-121. Epub 2017 Oct 23. https://doi.org/10.1002/ajh.24929; PMid:28971506

Andolfo I, Russo R, Rosato BE, Manna F, Gambale A, Brugnara C, Iolascon A. (2018). Genotype-phenotype correlation and risk stratification in a cohort of 123 hereditary stomatocytosis patients. Am J Hematol. 93(12): 1509-1517. Epub 2018 Oct 2. https://doi.org/10.1002/ajh.25276; PMid:30187933

Archer NM, Shmukler BE, Andolfo I, Vandorpe DH, Gnanasambandam R, Higgins JM et al. (2014). Hereditary xerocytosis revisited. Am J Hematol. 89(12): 1142-1146. Epub 2014 Jul 21. https://doi.org/10.1002/ajh.23799; PMid:25044010 PMCid:PMC4237618

Beaumont C, Canonne-Hergaux F. (2005). Erythrophagocytosis and recycling of heme iron in normal and pathological conditions; regulation by hepcidin. Transfus Clin Biol. 12(2): 123-130. French. https://doi.org/10.1016/j.tracli.2005.04.017; PMid:15927501

Caridi G, Murer L, Bellantuono R, Sorino P, Caringella DA et al. (1998). Renal-retinal syndromes: association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am J Kidney Dis. 32(6): 1059-1062. https://doi.org/10.1016/S0272-6386(98)70083-6; PMid:9856524

Caulier A, Rapetti-Mauss R, Guizouarn H, Picard V, Garçon L, Badens C. (2018). Primary red cell hydration disorders: Pathogenesis and diagnosis. Int J Lab Hematol. 40; Suppl 1: 68-73. https://doi.org/10.1111/ijlh.12820; PMid:29741259

Coignard-Biehler H, Lanternier F, Hot A, Salmon D, Berger A, de Montalembert M et al. (2011). Adherence to preventive measures after splenectomy in the hospital setting and in the community. J Infect Public Health. 4(4): 187-194. Epub 2011 Sep 21. https://doi.org/10.1016/j.jiph.2011.06.004; PMid:22000846

Del Orbe Barreto R, Arrizabalaga B, De la Hoz Rastrollo AB, García-Orad A, Gonzalez Vallejo I et al. (2016). Hereditary xerocytosis, a misleading anemia. Ann Hematol. 95(9): 1545-1546. Epub 2016 Jun 1. https://doi.org/10.1007/s00277-016-2716-9; PMid:27250707

Fattizzo B, Giannotta JA, Cecchi N, Barcellini W. (2021). Confounding factors in the diagnosis and clinical course of rare congenital hemolytic anemias. Orphanet J Rare Dis. 16(1): 415. https://doi.org/10.1186/s13023-021-02036-4; PMid:34627331 PMCid:PMC8501562

Fermo E, Bogdanova A, Petkova-Kirova P, Zaninoni A, Marcello AP, Makhro A et al. (2017). 'Gardos Channelopathy': a variant of hereditary Stomatocytosis with complex molecular regulation. Sci Rep. 7(1): 1744. https://doi.org/10.1038/s41598-017-01591-w; PMid:28496185 PMCid:PMC5431847

Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P et al. (2015). Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 527(7576): 64-69. Epub 2015 Sep 21. https://doi.org/10.1038/nature15247; PMid:26390154

Glogowska E, Gallagher PG. (2015). Disorders of erythrocyte volume homeostasis. Int J Lab Hematol. 37 Suppl 1(01): 85-91. https://doi.org/10.1111/ijlh.12357; PMid:25976965 PMCid:PMC4435826

Glogowska E, Schneider ER, Maksimova Y, Schulz VP, Lezon-Geyda K, Wu J et al. (2017). Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis. Blood. 130(16): 1845-1856. Epub 2017 Jul 17. https://doi.org/10.1182/blood-2017-05-786004; PMid:28716860 PMCid:PMC5649553

Gregor A, Krumbiegel M, Kraus C, Reis A, Zweier C. (2012). De novo triplication of the MAPT gene from the recurrent 17q21.31 microdeletion region in a patient with moderate intellectual disability and various minor anomalies. Am J Med Genet A. 158A(7): 1765-1770. Epub 2012 Jun 7. https://doi.org/10.1002/ajmg.a.35427; PMid:22678764

Hall JE. (2015). The Liver as an Organ. Guyton and Hall Textbook of Medical Physiology. Imprint: Saunders; 13th edition: 1168.

Hladilkova E, Barøy T, Fannemel M, Vallova V, Misceo D, Bryn V et al. (2015). A recurrent deletion on chromosome 2q13 is associated with developmental delay and mild facial dysmorphisms. Mol Cytogenet. 8: 57. https://doi.org/10.1186/s13039-015-0157-0; PMid:26236398 PMCid:PMC4521466

Houston BL, Zelinski T, Israels SJ, Coghlan G, Chodirker BN, Gallagher PG et al. (2011). Refinement of the hereditary xerocytosis locus on chromosome 16q in a large Canadian kindred. Blood Cells Mol Dis. 47(4): 226-231. Epub 2011 Sep 25. https://doi.org/10.1016/j.bcmd.2011.08.001; PMid:21944700

Huisjes R, van Solinge WW, Levin MD, van Wijk R, Riedl JA. (2018). Digital microscopy as a screening tool for the diagnosis of hereditary hemolytic anemia. Int J Lab Hematol. 40(2): 159-168. Epub 2017 Nov 1. https://doi.org/10.1111/ijlh.12758; PMid:29090523

Iolascon A, Andolfo I, Russo R. (2019). Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol. 187(1): 13-24. Epub 2019 Jul 31. https://doi.org/10.1111/bjh.16126; PMid:31364155

Iolascon A, De Falco L, Borgese F, Esposito MR, Avvisati RA, Izzo P et al. (2009). A novel erythroid anion exchange variant (Gly796Arg) of hereditary stomatocytosis associated with dyserythropoiesis. Haematologica. 94(8): 1049-1059. https://doi.org/10.3324/haematol.2008.002873; PMid:19644137 PMCid:PMC2719027

Ito K, Mitchell DG. (2000). The spleen in hematologic disorders. JBR-BTR. 83(4): 205-206. PMID: 11126793.

Jaïs X, Till SJ, Cynober T, Ioos V, Garcia G, Tchernia G et al. (2003). An extreme consequence of splenectomy in dehydrated hereditary stomatocytosis: gradual thrombo-embolic pulmonary hypertension and lung-heart transplantation. Hemoglobin. 27(3): 139-147. https://doi.org/10.1081/HEM-120023377; PMid:12908798

Landrum MJ, Chitipiralla S, Kaur K, Brown G, Chen C, Hart J et al. (2025). ClinVar: updates to support classifications of both germline and somatic variants. Nucleic Acids Res. 53(D1): D1313-D1321. https://doi.org/10.1093/nar/gkae1090; PMid:39578691 PMCid:PMC11701624

Liu Y, Qiu T, Chen Z, Ma X, Wang T, Zhang Y et al. (2023). A case report of two Chinese monozygotic twins with NPHP1 gene-associated nephronophthisis undergoing kidney transplantation from a related living-donor. J Transpl Immunol. 78: 101828. Epub 2023 Mar 21. https://doi.org/10.1016/j.trim.2023.101828; PMid:36948406

Nakahara E, Yamamoto KS, Ogura H, Aoki T, Utsugisawa T, Azuma K et al. (2023). Variant spectrum of PIEZO1 and KCNN4 in Japanese patients with dehydrated hereditary stomatocytosis. Hum Genome Var. 10(1): 8. https://doi.org/10.1038/s41439-023-00235-y; PMid:36864026 PMCid:PMC9981561

Narla J, Mohandas N. (2017). Red cell membrane disorders. Int J Lab Hematol. 39; Suppl 1: 47-52. https://doi.org/10.1111/ijlh.12657; PMid:28447420

Ogawa C, Tsuchiya K, Maeda K. (2020). Reticulocyte hemoglobin content. Clin Chim Acta. 504: 138-145. Epub 2020 Jan 31. https://doi.org/10.1016/j.cca.2020.01.032; PMid:32014518

Orangzeb S, Watle SV, Caugant DA. (2023). Adherence to vaccination guidelines of patients with complete splenectomy in Norway, 2008-2020. Vaccine. 41(31): 4579-4585. Epub 2023 Jun 17. https://doi.org/10.1016/j.vaccine.2023.06.034; PMid:37336662

Orphanidou-Vlachou E, Tziakouri-Shiakalli C, Georgiades CS. (2014). Extramedullary hemopoiesis. Semin Ultrasound CT MR. 35(3): 255-262. Epub 2013 Dec 19. https://doi.org/10.1053/j.sult.2013.12.001; PMid:24929265

Paessler M, Hartung H. (2015). Dehydrated hereditary stomatocytosis masquerading as MDS. Blood. 125(11): 1841. https://doi.org/10.1182/blood-2014-11-612184; PMid:25927085

Park HC, Joo Y, Lee OJ, Lee K, Song TK, Choi C et al. (2024). Automated classification of liver fibrosis stages using ultrasound imaging. BMC Med Imaging. 24(1): 36. https://doi.org/10.1186/s12880-024-01209-4; PMid:38321373 PMCid:PMC10848434

Park J, Jang W, Han E, Chae H, Yoo J, Kim Y et al. (2018). Hereditary dehydrated stomatocytosis with splicing site mutation of PIEZO1 mimicking myelodysplastic syndrome diagnosed by targeted next-generation sequencing. Pediatr Blood Cancer. 65(7): e27053. Epub 2018 Mar 30. https://doi.org/10.1002/pbc.27053; PMid:29603612

Picard V, Guitton C, Thuret I, Rose C, Bendelac L, Ghazal K et al. (2019). Clinical and biological features in PIEZO1-hereditary xerocytosis and Gardos channelopathy: a retrospective series of 126 patients. Haematologica. 104(8): 1554-1564. Epub 2019 Jan 17. https://doi.org/10.3324/haematol.2018.205328; PMid:30655378 PMCid:PMC6669138

Rapetti-Mauss R, Lacoste C, Picard V, Guitton C, Lombard E, Loosveld M et al. (2015). A mutation in the Gardos channel is associated with hereditary xerocytosis. Blood. 126(11): 1273-1280. Epub 2015 Jul 6. https://doi.org/10.1182/blood-2015-04-642496; PMid:26148990

Russo R, Marra R, Rosato BE, Iolascon A, Andolfo I. (2020). Genetics and Genomics Approaches for Diagnosis and Research Into Hereditary Anemias. Front Physiol. 11: 613559. https://doi.org/10.3389/fphys.2020.613559; PMid:33414725 PMCid:PMC7783452

Sandberg MB, Nybo M, Birgens H, Frederiksen H. (2014). Hereditary xerocytosis and familial haemolysis due to mutation in the PIEZO1 gene: a simple diagnostic approach. Int J Lab Hematol. 36(4): e62-e65. Epub 2013 Dec 6. https://doi.org/10.1111/ijlh.12172; PMid:24314002

Stewart GW, Gibson JS, Rees DC. (2023). The cation-leaky hereditary stomatocytosis syndromes: A tale of six proteins. Br J Haematol. 203(4): 509-522. Epub 2023 Sep 7. https://doi.org/10.1111/bjh.19093; PMid:37679660

Stolyar H, Berry T, Singh AP, Madan I. (2021). PIEZO1 mutation: a rare aetiology for fetal ascites. BMJ Case Rep. 14(4): e240682. https://doi.org/10.1136/bcr-2020-240682; PMid:33837027 PMCid:PMC8043013

Walker LC, Hoya M, Wiggins GAR, Lindy A, Vincent LM, Parsons MT et al. (2023). Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: Recommendations from the ClinGen SVI Splicing Subgroup. Am J Hum Genet. 110(7): 1046-1067. Epub 2023 Jun 22. https://doi.org/10.1016/j.ajhg.2023.06.002; PMid:37352859 PMCid:PMC10357475

Wolf MTF. (2015). Nephronophthisis and related syndromes. J. Curr Opin Pediatr. 27(2): 201-211. https://doi.org/10.1097/MOP.0000000000000194; PMid:25635582 PMCid:PMC4422489

Zama D, Giulietti G, Muratore E, Andolfo I, Russo R et al. (2020). A novel PIEZO1 mutation in a patient with dehydrated hereditary stomatocytosis: a case report and a brief review of literature. Ital J Pediatr. 46(1): 102. https://doi.org/10.1186/s13052-020-00864-x; PMid:32703298 PMCid:PMC7379360

Zarychanski R, Schulz VP, Houston BL, Maksimova Y, Houston DS, Smith B et al. (2012). Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood. 120(9): 1908-1915. Epub 2012 Apr 23. https://doi.org/10.1182/blood-2012-04-422253; PMid:22529292 PMCid:PMC3448561

Published

2025-06-15