Modern approaches to diagnosis and treatment of respiratory epithelial dysfunction

Authors

DOI:

https://doi.org/10.15574/SP.2025.4(148).8489

Keywords:

respiratory epithelial dysfunction, asthma, epithelial barrier, ectoine, children, allergic diseases, microbiota, diagnostic methods, prevention, treatment

Abstract

The integrity of the respiratory epithelium protects the airways from the penetration of external harmful agents. Impairments in the structure and function of the epithelial barrier can lead to chronic inflammatory processes that underlie the pathogenesis of numerous allergic and inflammatory respiratory diseases, particularly in children.

Аim - to review contemporary scientific literature on the role of epithelial barrier dysfunction in the development of allergic diseases, and to examine methods for the diagnosis and treatment of respiratory epithelial dysfunction (RED) based on the latest scientific evidence.

An analysis of literature from international databases, including PubMed, ScienceDirect, and Google Scholar, for the period 2018-2025 was conducted. RED involves the disruption of its structural integrity, leading to a compromised barrier function and increased permeability to external agents such as allergens, pollutants, and pathogens. In patients with asthma, a decreased expression of proteins that form tight junctions between epithelial cells is observed, constituting a critical pathogenetic mechanism in the development of respiratory allergic diseases. The combined use of modern methods—such as histological and immunohistochemical analyses, electron microscopy, mass spectrometry, proteomics, and the study of alarmins — allows for a more effective assessment of the respiratory epithelial barrier's status. Modern therapeutic strategies for RED are aimed at restoring the structure and function of epithelial tight junctions.

Conclusions. RED is a key factor in the development of asthma and other respiratory diseases, especially in the pediatric population. Early diagnosis and timely intervention to enhance epithelial barrier function are critical for achieving successful disease control. Future research prospects include the development of novel preventive and therapeutic approaches aimed at restoring and maintaining the integrity of the respiratory epithelium.

The authors declare no conflict of interest.

References

Aghapour M, Ubags ND, Bruder D, Hiemstra PS et al. (2022). Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev. 31(163): 210112. https://doi.org/10.1183/16000617.0112-2021; PMid:35321933 PMCid:PMC9128841

Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF et al. (2020). Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res Int. 27(34): 42390-42404. https://doi.org/10.1007/s11356-020-10574-w; PMid:32870429

Bourdin A, Brusselle G, Couillard S, Fajt ML, et al. (2024). Phenotyping of Severe Asthma in the Era of Broad-Acting Anti-Asthma Biologics. J Allergy Clin Immunol Pract. 12(4):809-823. https://doi.org/10.1016/j.jaip.2024.01.023; PMid:38280454

Carlier FM, de Fays C, Pilette C. (2021). Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol. 12: 691227. https://doi.org/10.3389/fphys.2021.691227; PMid:34248677 PMCid:PMC8264588

Celebi Sozener Z, Özdel OB, Cerci P et al. (2022). Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease Allergy. 77(5): 1418-1449. https://doi.org/10.1111/all.15240; PMid:35108405 PMCid:PMC9306534

Dong X, Ding M, Zhang J, Ogülür I et al. (2022). Involvement and therapeutic implications of airway epithelial barrier dysfunction in type 2 inflammation of asthma. Chin Med J (Engl). 135(5): 519-531. https://doi.org/10.1097/CM9.0000000000001983; PMid:35170505 PMCid:PMC8920422

Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS et al. (2025). Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol. 18(3): 524-536. https://doi.org/10.1016/j.mucimm.2025.03.003; PMid:40154790

Esnault S, Dill-McFarland KA, Altman MC, Rosenkranz MA et al. (2025). Identification of bronchial epithelial genes associated with type 2 eosinophilic inflammation in asthma. J Allergy Clin Immunol. 155(5): 1510-1520. https://doi.org/10.1016/j.jaci.2024.12.1089; PMid:39793714

Frey A, Lunding LP, Wegmann M. (2023). The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells. 12(18): 2208. https://doi.org/10.3390/cells12182208; PMid:37759430 PMCid:PMC10526792

Gohy S, Hupin C, Ladjemi MZ, Hox V, Pilette C. (2020). Key role of the epithelium in chronic upper airways diseases. Clin Exp Allergy. 50(2): 135-146. https://doi.org/10.1111/cea.13539; PMid:31746062

Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T et al. (2020). Epithelial cell dysfunction, a major driver of asthma development. Allergy. 75(8): 1902-1917. https://doi.org/10.1111/all.14421; PMid:32460363 PMCid:PMC7496351

Hellings PW, Steelant B. (2020). Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 145(6): 1499-1509. https://doi.org/10.1016/j.jaci.2020.04.010; PMid:32507228 PMCid:PMC7270816

Inoue H, Akimoto K, Homma T, Tanaka A et al. (2020). Airway Epithelial Dysfunction in Asthma: Relevant to Epidermal Growth Factor Receptors and Airway Epithelial Cells. J. Clin. Med. 9: 3698. https://doi.org/10.3390/jcm9113698; PMid:33217964 PMCid:PMC7698733

Jakwerth CA, Ordovas-Montanes J, Blank S, Schmidt-Weber CB et al. (2022). Role of Respiratory Epithelial Cells in Allergic Diseases. Cells. 11(9): 1387. https://doi.org/10.3390/cells11091387; PMid:35563693 PMCid:PMC9105716

Kayalar Ö, Rajabi H, Konyalilar N, Mortazavi D et al. (2024). Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Front Immunol. 15: 1324552. https://doi.org/10.3389/fimmu.2024.1324552; PMid:38524119 PMCid:PMC10957538

Khaytovych MV. (2021). Ektoin: mekhanizmy respiratornoyi tsytoprotektsiyi (Ectoine: mechanisms of respiratory cytoprotection). Zdorovya Ukrayiny. 16(509): 52-53. https://doi.org/10.21706/aep-16-1-52

Kucuksezer UC, Ozdemir C, Yazici D, Pat Y et al. (2023). The epithelial barrier theory: Development and exacerbation of allergic and other chronic inflammatory diseases. Asia Pac Allergy. 13(1): 28-39. https://doi.org/10.5415/apallergy.0000000000000005; PMid:37389096 PMCid:PMC10166244

Lee YG, Lee PH, Choi SM, An MH et al. (2021). Effects of Air Pollutants on Airway Diseases. Int J Environ Res Public Health. 18(18): 9905. https://doi.org/10.3390/ijerph18189905; PMid:34574829 PMCid:PMC8465980

Losol P, Sokolowska M, Hwang YK, Ogulur I et al. (2023). Epithelial Barrier Theory: The Role of Exposome, Microbiome, and Barrier Function in Allergic Diseases. Allergy Asthma Immunol Res. 15(6): 705-724. https://doi.org/10.4168/aair.2023.15.6.705; PMid:37957791 PMCid:PMC10643858

Lu HF, Zhou YC, Yang LT, Zhou Q et al. (2024). Involvement and repair of epithelial barrier dysfunction in allergic diseases. Front Immunol. 15: 1348272. https://doi.org/10.3389/fimmu.2024.1348272; PMid:38361946 PMCid:PMC10867171

Noureddine N, Chalubinski M, Wawrzyniak P. (2022). The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy. 15: 487-504. https://doi.org/10.2147/JAA.S324080; PMid:35463205 PMCid:PMC9030405

Ozdemir C, Kucuksezer UC, Ogulur I, Pat Y et al. (2024). Lifestyle Changes and Industrialization in the Development of Allergic Diseases. Curr Allergy Asthma Rep. 24(7): 331-345. https://doi.org/10.1007/s11882-024-01149-7; PMid:38884832 PMCid:PMC11233349

Pat Y, Yazici D, D'Avino P, Li M, et al. (2024). Recent advances in the epithelial barrier theory. Int Immunol. 36(5):211-222. https://doi.org/10.1093/intimm/dxae002; PMid:38227765 PMCid:PMC10989673

Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. (2023). Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol. 14: 1201658. https://doi.org/10.3389/fimmu.2023.1201658; PMid:37520564 PMCid:PMC10374037

Russell RJ, Boulet L-P, Brightling CE et al. (2024). The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J. 63(4): 2301397. https://doi.org/10.1183/13993003.01397-2023; PMid:38453256 PMCid:PMC10991852

Schleimer RP, Berdnikovs S. (2017). Etiology of epithelial barrier dysfunction in type 2 inflammatory diseases J Allergy Clin Immunol. 139(6): 17521761. https://doi.org/10.1016/j.jaci.2017.04.010; PMid:28583447 PMCid:PMC5753806

Sharma M, Huber E, Arnesdotter E, Behrsing HP et al. (2025). Minimum information for reporting on the TEER (trans-epithelial/endothelial electrical resistance) assay (MIRTA). Arch Toxicol. 99(1): 57-66. https://doi.org/10.1007/s00204-024-03879-z; PMid:39365315 PMCid:PMC11742365

Sugita K, Soyka MB, Wawrzyniak P, Rinaldi AO, et al. (2020). Outside-in hypothesis revisited: The role of microbial, epithelial, and immune interactions. Ann Allergy Asthma Immunol. 125(5): 517-527. https://doi.org/10.1016/j.anai.2020.05.016; PMid:32454094

Tran BH, Dao VA, Bilstein A, Unfried K et al. (2019). Ectoine-Containing Inhalation Solution versus Saline Inhalation Solution in the Treatment of Acute Bronchitis and Acute Respiratory Infections: A Prospective, Controlled, Observational Study. Biomed Res Int. 2019: 7945091. https://doi.org/10.1155/2019/7945091; PMid:30834276 PMCid:PMC6374829

Werkhäuser N, Bilstein A, Mahlstedt K, Sonnemann U. (2022). Observational study investigating Ectoin® Rhinitis Nasal Spray as natural treatment option of acute rhinosinusitis compared to treatment with Xylometazoline. Eur Arch Otorhinolaryngol. 279(3): 1371-1381. https://doi.org/10.1007/s00405-021-06916-0; PMid:34089097 PMCid:PMC8897346

Yazici D, Ogulur I, Pat Y, Babayev H et al. (2023). The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol. 70: 101846. https://doi.org/10.1016/j.smim.2023.101846; PMid:37801907

Zhou J, Zhou XD, Xu R, Du XZ et al. (2021). The Degradation of Airway Epithelial Tight Junctions in Asthma Under High Airway Pressure Is Probably Mediated by Piezo-1. Front Physiol. 12: 637790. https://doi.org/10.3389/fphys.2021.637790; PMid:33868003 PMCid:PMC8047413

Published

2025-06-15