The use of a combination of amino acids (arginine, betaine, and carnitine) and riboflavin in pediatric practice (review article)
DOI:
https://doi.org/10.15574/SP.2025.4(148).6270Keywords:
amino acids, arginine, betaine, carnitine, riboflavin, children, intoxication syndromeAbstract
Aim - to analyze the literature data on the role of amino acids, in particular arginine, betaine and carnitine in pediatric practice.
Information was searched in the Web of Science, Scopus, PubMed Central, Google Scholar databases using the following keywords: amino acids, arginine, betaine, carnitine, riboflavin, children. Amino acids are involved in many metabolic processes, in particular in the production of hormones, neurotransmitters and enzymes, contribute to the synthesis of nucleotides, maintenance of redox balance, cell and organism function. According to the literature, they play a fundamental role in childhood in building tissues, supporting brain development, participating in the synthesis of neurotransmitters, which is important for cognitive development, attention, and memory, supporting the immune system and the body's ability to recover from stress, injuries, and physical exertion. In addition to their physiological functions, amino acids are also active therapeutic ingredients used in the prevention and treatment of various diseases, including those of the nervous, cardiovascular, digestive, immune and endocrine systems. Arginine can help improve blood flow to organs that are stressed during intoxication, such as the liver and kidneys, and stimulate metabolism and the elimination of toxins. Carnitine can help maintain the body's energy balance by promoting the use of fatty acids as an energy source, which helps the body recover after intoxication. Betaine can help improve detoxification, support liver function, and reduce toxic substances in the body. Riboflavin, due to its antioxidant properties, can reduce cell damage caused by free radicals that occur during intoxication.
Conclusions. The combination of the amino acids arginine, betaine, carnitine and the addition of riboflavin can be extremely useful in pediatrics, since each of these components has specific properties that can complement each other, providing comprehensive support for children's health.
The authors declare no conflict of interest.
References
Alam J, Fahim SM, Islam Md R, Alam Md A, Gazi Md A, Ahmed T. (2024). Effects of L-Carnitine Supplementation on the Rate of Weight Gain and Biomarkers of Environmental Enteric Dysfunction in Children with Severe Acute Malnutrition: A Double-Blind Randomized Controlled Clinical Trial. The Journal of Nutrition. 154(3): 949-961. https://doi.org/10.1016/j.tjnut.2024.01.031; PMid:38331348
Arumugam MK, Paal MC, Donohue TM Jr, Ganesan M, Osna NA, Kharbanda KK. (2021). Beneficial Effects of Betaine: A Comprehensive Review. Biology. 10(6): 456. https://doi.org/10.3390/biology10060456; PMid:34067313 PMCid:PMC8224793
Auclair O, Han Y, Burgos SA. (2019). Consumption of Milk and Alternatives and Their Contribution to Nutrient Intakes among Canadian Adults: Evidence from the 2015 Canadian Community Health Survey - Nutrition. Nutrients. 11(8): 1948. https://doi.org/10.3390/nu11081948; PMid:31430962 PMCid:PMC6724033
Babiienko VV, Vatan MM. (2021). Arhinin u kharchuvanni ditei ta pidlitkiv: dosvid rehionalnoi prohramy sanitarno-hihiienichnoho monitorynhu. Visnyk sotsialnoi hihiieny ta orhanizatsii okhorony zdorov'ia Ukrainy. 4: 58-62. https://doi.org/10.11603/1681-2786.2021.4.12857
Bailey LB, Stover PJ, McNulty H et al. (2015). Biomarkers of Nutrition for Development-Folate Review. J Nutr. 145(7): 1636S-1680S. https://doi.org/10.3945/jn.114.206599; PMid:26451605 PMCid:PMC4478945
Beketova HV. (2020). Metabolichna korektsiia atsetonurychnoho syndromu u ditei. Zdorov'ia Ukrainy. Tematychnyi nomer «Pediatriia». 5(56): 19. URL: https://health-ua.com/multimedia/userfiles/files/2020/Pediatria_5_2020/Pediatria_5_2020_str_19.pdf.
Belousova OIu, Shutova EV, Solodovnychenko YH, Babadzhanian EN, Voloshyna LH. (2017). Korrektsyia metabolycheskykh narushenyi pry atsetonemycheskom syndrome u detei na fone funktsyonalnыkh rasstroistv bylyarnoho trakta. Zdorove rebenka. 12: 225-231. https://doi.org/10.22141/2224-0551.12.2.1.2017.100985
Berezyn AE. (2019). Terapevtycheskyi potentsyal L-arhynyna pry kardyovaskuliarnikh zabolevanyiakh. Ukr. med. chasopys. 2(1): 61-64. URL: http://nbuv.gov.ua/UJRN/UMCh_2019_2%281%29__18.
Bielousova O Iu. (2023). Syndrom tsyklichnoho bliuvannia: problema pediatriv i ne tilky. Dytiachyi likar. 4(85): 7-11. URL: https://d-l.com.ua/ua/archive/2023/4%2885%29/pages-7-11/sindrom-ciklichnogo-blyuvannya-problema-pediatriv-i-ne-tilki.
Böger RH. (2014). The pharmacodynamics of L-arginine. Altern Ther Health Med. 20(3): 48-54. PMID: 24755570.
Castora FJ. (2019). Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Prog. Neuropsychopharmacol. Biol. Psychiatry. 92: 83-108. https://doi.org/10.1016/j.pnpbp.2018.12.015; PMid:30599156
Chandana T, Venkatesh YP. (2016). Occurrence, Functions and Biological Significance of Arginine-Rich Proteins. Curr Protein Pept Sci. 17(5): 507-516. https://doi.org/10.2174/1389203717666151201192348; PMid:26916156
Commission Regulation (EU). (2012). No. 432/2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children's development and health. Official Journal of the European Union L. 136: 1-40. URL: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:0001:0040:en:PDF.
Czeczot H, Scibior D. (2005). Rola L-karnityny w przemianach, zywieniu i terapii [Role of L-carnitine in metabolism, nutrition and therapy]. Postepy Hig Med Dosw (Online). 59: 9-19. PMID: 15761381.
Davydenko AV. (2023). Analiz naukovykh doslidzhen ta klinichnoho zastosuvannia L-karnitynu v pediatrychnii praktytsi. Aktualni problemy suchasnoi medytsyny. 23(4): 30-34. https://doi.org/10.31718/2077-1096.23.4.30
Dobrijević D, Pastor K, Nastić N, Özogul F, Krulj J, Kokić B et al. (2023). Betaine as a Functional Ingredient: Metabolism, Health-Promoting Attributes, Food Sources, Applications and Analysis Methods. Molecules. 28(12): 4824. https://doi.org/10.3390/molecules28124824; PMid:37375378 PMCid:PMC10302777
Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T et al. (2016). L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 167(3): 829-842.e13. https://doi.org/10.1016/j.cell.2016.09.031; PMid:27745970 PMCid:PMC5075284
Gorobets AO. (2019). Vitamins and microelements as specific regulators of physiological and metabolic processes in the body of children and adolescents. Ukrainian Journal of Perinatology and Pediatrics. 4(80): 75-92. https://doi.org/10.15574/PP.2019.80.75
Grimes JM, Khan S, Badeaux M, Rao RM, Rowlinson SW, Carvajal RD. (2021). Arginine depletion as a therapeutic approach for patients with COVID-19. Int J Infect Dis. 102: 566-570. https://doi.org/10.1016/j.ijid.2020.10.100; PMid:33160064 PMCid:PMC7641537
Health-ua. (2023). Dodatkove vzhyvannia arhininu ta betainu yak suchasnyi sposib pidtrymannia funktsii pechinky. UA-HEPA-PUB-032023-010. Zdorov'ia Ukrainy 21 storichchia. 7(543). URL: https://health-ua.com/terapiya-i-semeynaya-meditsina/xvorobi-pecinki/72269-dodatkove-vzhivannya-argnnu-ta-betanu-yak-suchasnij-sposb-pdtrimannya-funkt.
Heidari R, Niknahad H, Sadeghi A, Mohammadi H, Ghanbarinejad V et al. (2018). Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed. Pharmacother. 103: 75-86. https://doi.org/10.1016/j.biopha.2018.04.010; PMid:29635131
Horobets AO, Berezenko VS, Levadna LO. (2020). Nutritive status peculiarities, assessment and correction in chronic liver diseases in children. Modern Pediatrics. Ukraine. 4(108): 81-92. https://doi.org/10.15574/SP.2020.108.81
Kathirvel E, Morgan K, Nandgiri G, Sandoval BC, Caudill MA et al. (2010). Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am J Physiol Gastrointest Liver Physiol. 299(5): G1068-1077. https://doi.org/10.1152/ajpgi.00249.2010; PMid:20724529 PMCid:PMC2993168
Kelly B, Pearce EL. (2020). Amino Assets: How Amino Acids Support Immunity. Cell Metabolism. 32(2): 154-175. https://doi.org/10.1016/j.cmet.2020.06.010; PMid:32649859
Kępka A, OchocińskaA, Chojnowska S, Borzym-Kluczyk M, Skorupa E et al. (2021). Potential Role of L-Carnitine in Autism Spectrum Disorder. J Clin Med. 10(6): 1202. https://doi.org/10.3390/jcm10061202; PMid:33805796 PMCid:PMC8000371
Kępka A, Szajda SD, Waszkiewicz N, Płudowski P, Chojnowska S, Michał Rudy M et al. (2011). Carnitine: Function, metabolism and value in hepatic failure during chronic alcohol intoxication. Post. Hig. Med. Dosw. 65: 645-653. https://doi.org/10.5604/17322693.962226; PMid:22100797
Kerr MA, Livingstone B, Bates CJ et al. (2009). Folate, related B vitamins, and homocysteine in childhood and adolescence: potential implications for disease risk in later life. Pediatrics. 123(2): 627-635. https://doi.org/10.1542/peds.2008-1049; PMid:19171631
Kramarev SA, Zakordonets LV. (2019). Vozmozhnosty prymenenyia arhynyna y betayna v klynycheskoi praktyke. Zdorove rebenka. 14(5). URL: http://ir.librarynmu.com/handle/123456789/2971.
Kriuchko TO, Bubyr LM, Poda OA, Kolenko IO, Ivanytskyi IV ta insh. (2024). Metabolichno-asotsiiovana steatotychna khvoroba pechinky v ditei: mozhlyvosti diahnostyky ta likuvannia. Suchasna hastroenterolohiia. 4(138): 18-28. https://doi.org/10.30978/MG-2024-4-18
Kushta AO. (2022). Vplyv kompleksnoi terapii iz zastosuvanniam L-arhininu ta hlutaminovoi kysloty na vidnovni protsesy u onkokhvorykh. Visnyk Vinnytskoho natsionalnoho medychnoho universytetu. 26(2): 225-228. https://doi.org/10.31393/reports-vnmedical-2022-26(2)-09
Lever M, Slow S. (2010). The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem. 43(9): 732-744. https://doi.org/10.1016/j.clinbiochem.2010.03.009; PMid:20346934
Lienhart WD, Gudipati V, Macheroux P. (2013). The human flavoproteome. Arch. Biochem. Biophys. 535: 150-162. https://doi.org/10.1016/j.abb.2013.02.015; PMid:23500531 PMCid:PMC3684772
Ling ZN, Jiang YF, Ru JN et al. (2023). Amino acid metabolism in health and disease. Signal Transduction and Targeted Therapy. 8: 345. https://doi.org/10.1038/s41392-023-01569-3; PMid:37699892 PMCid:PMC10497558
Marushko YuV, Boiko NS, Lysovets OV ta in. (2011). Dosvid zastosuvannia preparatu Neirovitan u ditei z vehetatyvnoiu dysfunktsiieiu. Zdorov'ia Ukrainy. 3: 62-63. URL: https://health-ua.com/pics/pdf/ZU_2011_Nevro_1/62-63.pdf.
McNulty H, Pentieva K, Ward M. (2023). Causes and Clinical Sequelae of Riboflavin Deficiency. Annual Review of Nutrition. 43: 101-122. https://doi.org/10.1146/annurev-nutr-061121-084407; PMid:37603429
McRae MP. (2013). Betaine supplementation decreases plasma homocysteine in healthy adult participants: a meta-analysis. J Chiropr Med. 12(1): 20-25. https://doi.org/10.1016/j.jcm.2012.11.001; PMid:23997720 PMCid:PMC3610948
Mitiuriaieva-Korniiko IO. (2018). Imunomoduliuiuchi mozhlyvosti L-karnitinu - inovatsiine medykamentozne suprovodzhennia terapii infektsiinoho protsesu. Mizhnarodnyi zhurnal pediatrii, akusherstva ta hinekolohii. 12(3): 76-81. URL: http://ijpog.org/downloads/32/2.pdf.
Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ. (2020). Riboflavin Deficiency - Implications for General Human Health and Inborn Errors of Metabolism. International Journal of Molecular Sciences. 21(11): 3847. https://doi.org/10.3390/ijms21113847; PMid:32481712 PMCid:PMC7312377
Mukherjee S. (2020). Role of betaine in liver disease-worth revisiting or has the die been cast? World J Gastroenterol. 26(38): 5745-5748. https://doi.org/10.3748/wjg.v26.i38.5745; PMid:33132631 PMCid:PMC7579752
Nelson DL, Cox MM. (2017). Lehninger principles of biochemistry. 7th edn. URL: https://www.scirp.org/reference/referencespapers?referenceid=2103234.
Nemish IL. (2024). Hiperamoniiemiia yak napriam korektsii patohenezu khronichnykh zakhvoriuvan pechinky. Ukr. med. chasopys. 5(163). https://doi.org/10.32471/umj.1680-3051.163.257050
Odia A, Esezobor OZ. (2017). Therapeutic uses of amino acids. In book: Amino Acid - New Insights and Roles in Plant and Animal. Chapter: 1. Publisher: InTech. Editors: Toshiki Asao and Md. Asaduzzaman: 4-14. https://doi.org/10.5772/intechopen.68932
Osowska S, Moinard C, Neveux N, Loï C, Cynober L. (2004). Citrulline increases arginine pools and restores nitrogen balance after massive intestinal resection. Gut. 53(12): 1781-1786. https://doi.org/10.1136/gut.2004.042317; PMid:15542514 PMCid:PMC1774314
Paoletti A, Courtney-Martin G, Elango R. (2024). Determining amino acid requirements in humans Sec. Nutrition and Metabolism. Front. Nutr. 11: 1400719. https://doi.org/10.3389/fnut.2024.1400719; PMid:39091679 PMCid:PMC11291443
Peechakara BV, Sina RE, Gupta M. (2024). Vitamin B2 (Riboflavin). In: StatPearls. PMID: 30247852.
Pietkova IB, Unhurian LM, Horiacha LM. (2020). Doslidzhennia aminokyslot CENTAUREA CYANUS L. Medychna ta klinichna khimiia. 22(3): 94-98. https://doi.org/10.11603/mcch.2410-681X.2020.v.i3.11545
Pillai RR, Kurpad AV. (2012). Amino acid requirements in children and the elderly population. British Journal of Nutrition. 108: S44-S49. https://doi.org/10.1017/S0007114512002401; PMid:23107547
Ron-Harel N, Ghergurovich JM, Notarangelo G, LaFleur MW, Tsubosaka Y, Sharpe AH et al. (2019). T cell activation depends on extracellular alanine. Cell Rep. 28(12): 3011-3021.e4. https://doi.org/10.1016/j.celrep.2019.08.034; PMid:31533027 PMCid:PMC6934407
Ribas GS, Vargas CR, Wajner M. (2014). L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene. 533: 469-476. https://doi.org/10.1016/j.gene.2013.10.017; PMid:24148561
Ringseis R, Keller J, Eder K. (2012). Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: Evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur. J. Nutr. 51: 1-18. https://doi.org/10.1007/s00394-011-0284-2; PMid:22134503
Rucker RB, Zempleni J, Suttie JW, McCormick DB. (2012). Handbook of Vitamins. 4th Edition: 608. https://doi.org/10.1201/9781420005806
Sarrai DKhA, Horiacha LM, Zhuravel IO. (2021). Doslidzhennia aminokyslot u syrovyni Mirabilis Jalapa L. Annals of Mechnikov Institute. 3: 65-68. doi: 10.5281/zenodo.5499674.
Shadrin OH. (2018). Pytannia zastosuvannia kombinatsii betainu ta arhininu v klinichnii praktytsi. Praktykuiuchyi likar. 7(1): 25-29. URL: https://plr.com.ua/index.php/journal/article/view/6.
Sookoian S, Puri P, Castaño GO, Scian R, Mirshahi F et al. (2017). Nonalcoholic steatohepatitis is associated with a state of betaine-insufficiency. Liver Int. 37: 611-619. https://doi.org/10.1111/liv.13249; PMid:27614103
Stasyuk N, Gayda G, Yepremyan H, Stepien A, Gonchar M. (2017, Jan 5). Fluorometric enzymatic assay of l-arginine. Spectrochim Acta A Mol Biomol Spectrosc. 170: 184-190. Epub 2016 Jul 11. https://doi.org/10.1016/j.saa.2016.07.019; PMid:27450117
Stoieva TV, Bratkova LB, Prokhorova SV, Ryzhykova TI. (2018). Skorochennia tryvalosti syndromu astenii u ditei, shcho rozvynulas na tli hostrykh respiratornykh zakhvoriuvan, z vykorystanniam metabolichnoi terapii preparatom Kardonat. Zdorov'ia dytyny. 13(1): 144-149. URL: https://sperco.ua/wp-content/uploads/2020/10/Ctatya_Kardonat_dajdzhest_Stoeva.pdf
Suwannasom N, Kao I, Pruß A, Georgieva R, Bäumler H. (2020). Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. International Journal of Molecular Sciences. 21(3): 950. https://doi.org/10.3390/ijms21030950; PMid:32023913 PMCid:PMC7037471
Talebian A, Soltani B, Banafshe HR, Moosavi GA, Talebian M, Soltani S. (2018). Prophylactic effect of riboflavin on pediatric migraine: a randomized, double-blind, placebo-controlled trial. Electron Physician. 10(2): 6279-6285. https://doi.org/10.19082/6279; PMid:29629048 PMCid:PMC5878019
Thakur K, Tomar SK, De S. (2016). De Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 9: 441-451. https://doi.org/10.1111/1751-7915.12335; PMid:26686515 PMCid:PMC4919986
Tokarchuk NI, Vyzhga YV. (2016). Prescribtion of the levocarnitin for the treatment of secondary cardiomyopathy in infants. Sovremennaya pediatriya. 5(77): 67-70. https://doi.org/10.15574/SP.2016.77.67
Truitt C, Hoff WD, Deole R. (2021). Health functionalities of betaine in patients with homocystinuria. Front. Nutr. 8: 627. https://doi.org/10.3389/fnut.2021.690359; PMid:34568401 PMCid:PMC8459993
Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K et al. (2019). Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol. 848: 39-48. https://doi.org/10.1016/j.ejphar.2019.01.043; PMid:30689995
Waheed EJ., Obaid SMH, Ali AM. (2019). Biological Activities of Amino Acid Derivatives and their Complexes a Review. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 10(2): 1624-1641. URL: https://www.researchgate.net/publication/333784277_Biological_Activities_of_Amino_Acid_Derivatives_and_their_Complexes_a_Review.
Wang C, Ma C, Gong L, Dai S, Li Yu. (2021). Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. European Journal of Pharmacology. 912: 174604. https://doi.org/10.1016/j.ejphar.2021.174604; PMid:34743980
Willingham BD, Ragland TJ, Ormsbee MJ. (2020). Betaine Supplementation May Improve Heat Tolerance: Potential Mechanisms in Humans. Nutrients. 12: 2939. https://doi.org/10.3390/nu12102939; PMid:32992781 PMCid:PMC7599524
Wu G. (2013). Functional amino acids in nutrition and health. Amino Acids. 45: 407-411. https://doi.org/10.1007/s00726-013-1500-6; PMid:23595206
Yamanaka G, Suzuki S, Takeshita M, Go S, Morishita N, Takamatsu T et al. (2020). Effectiveness of low-dose riboflavin as a prophylactic agent in pediatric migraine. Brain and Development. 42(7): 523-528. https://doi.org/10.1016/j.braindev.2020.04.002; PMid:32336482
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Modern pediatrics. Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The policy of the Journal “MODERN PEDIATRICS. UKRAINE” is compatible with the vast majority of funders' of open access and self-archiving policies. The journal provides immediate open access route being convinced that everyone – not only scientists - can benefit from research results, and publishes articles exclusively under open access distribution, with a Creative Commons Attribution-Noncommercial 4.0 international license (СС BY-NC).
Authors transfer the copyright to the Journal “MODERN PEDIATRICS. UKRAINE” when the manuscript is accepted for publication. Authors declare that this manuscript has not been published nor is under simultaneous consideration for publication elsewhere. After publication, the articles become freely available on-line to the public.
Readers have the right to use, distribute, and reproduce articles in any medium, provided the articles and the journal are properly cited.
The use of published materials for commercial purposes is strongly prohibited.