Etiological therapy of respiratory-synchitic viral infection in the present and future
DOI:
https://doi.org/10.15574/SP.2024.7(143).7590Keywords:
children, respiratory syncytial virus infection, therapyAbstract
For several decades, acute respiratory infections caused by respiratory syncytial virus (RSV) have been a leading cause of respiratory tract pathology in young children.
The aim is to highlight modern concepts of pathogenesis and the main directions of medicamentous treatment of respiratory syncytial virus infection.
Two antigenic subtypes of RSV have been identified: A and B, and at least 37 genotypes of RSV type B and 13 genotypes of RSV type A. Respiratory syncytial virus infection (RSVI) in young children is characterized by a high probability of unfavorable life-threatening course, which requires hospitalization. Despite significant advances in virology and molecular biology that reveal the details of RSV interaction with the macrophage and the functioning of RSV replication mechanisms, treatment recommendations for patients with RSVI are limited mainly to pathogenetic and symptomatic therapy. Ribavirin, a nucleoside analog, is the only FDA-licensed antiviral agent for the treatment of RSVI that moderately inhibits viral replication. Instead, scientists are focusing on the development of new drugs that inhibit the activity of various viral proteins and surface receptor molecules of respiratory tract epithelial cells. The most promising drugs in this group are chemical compounds that inhibit RSV protein F, in particular, ziresovir, which is in phase III clinical trials. Currently, the possibility of using receptor tyrosine kinase inhibitors, such as erlotinib and vandetanib, in the treatment of RSVI is being investigated. Non-nucleoside inhibitors of RSV L-protein RNA polymerase, in particular the small molecule PC786, have great prospects for effective use in RSVI. It is also believed that the CX3CR1 receptor is the most promising target for drugs that will be developed to control the level of expression during the prevention and treatment of RSVI.
The authors declare no conflict of interest.
References
Alfano F, Bigoni T, Caggiano FP, Papi A. (2024, Jun). Respiratory Syncytial Virus Infection in Older Adults: An Update. Drugs Aging. 41(6): 487-505. Epub 2024 May 7. https://doi.org/10.1007/s40266-024-01118-9; PMid:38713299 PMCid:PMC11193699
Amarasinghe GK, Ayllón MA, Bào Y, Basler CF, Bavari S, Blasdell KR et al. (2019, Jul). Taxonomy of the order Mononegavirales: update 2019. Arch Virol. 164(7): 1967-1980. https://doi.org/10.1007/s00705-019-04247-4; PMid:31089958 PMCid:PMC6641539
Anderson CS, Chirkova T, Slaunwhite CG, Qiu X, Walsh EE et al. (2021, May 10). CX3CR1 Engagement by Respiratory Syncytial Virus Leads to Induction of Nucleolin and Dysregulation of Cilia-related Genes. J Virol. 95(11): e00095-21. Epub 2021 Mar 17. https://doi.org/10.1128/JVI.00095-21; PMid:33731455 PMCid:PMC8139714
Anderson CS, Chu CY, Wang Q, Mereness JA, Ren Y, Donlon K et al. (2020, Apr). CX3CR1 as a respiratory syncytial virus receptor in pediatric human lung. Pediatr Res. 87(5): 862-867. Epub 2019 Nov 14. https://doi.org/10.1038/s41390-019-0677-0; PMid:31726465 PMCid:PMC7774023
Bajorek M, Galloux M, Richard CA, Szekely O, Rosenzweig R et al. (2021, Mar 10). Tetramerization of Phosphoprotein is Essential for Respiratory Syncytial Virus Budding while its N Terminal Region Mediates Direct Interactions with the Matrix Protein. J Virol. 95(7): e02217-20. Epub 2021 Jan 6. https://doi.org/10.1128/JVI.02217-20; PMid:33408180 PMCid:PMC8092690
Basnet S, Palmenberg AC, Gern JE. (2019, May). Rhinoviruses and Their Receptors. Chest. 155(5): 1018-1025. Epub 2019 Jan 17. https://doi.org/10.1016/j.chest.2018.12.012; PMid:30659817 PMCid:PMC6533451
Battles MB, McLellan JS. (2019, Apr). Respiratory syncytial virus entry and how to block it. Nat Rev Microbiol. 17(4): 233-245. https://doi.org/10.1038/s41579-019-0149-x; PMid:30723301 PMCid:PMC7096974
Bawage SS, Tiwari PM, Singh A, Dixit S, Pillai SR et al. (2016, Nov). Gold nanorods inhibit respiratory syncytial virus by stimulating the innate immune response. Nanomedicine. 12(8): 2299-2310. Epub 2016 Jul 2. https://doi.org/10.1016/j.nano.2016.06.006; PMid:27381068 PMCid:PMC5116403
Bergeron HC, Murray J, Nuñez Castrejon AM, DuBois RM, Tripp RA. (2021, Feb 23). Respiratory Syncytial Virus (RSV) G Protein Vaccines With Central Conserved Domain Mutations Induce CX3C-CX3CR1 Blocking Antibodies. Viruses. 13(2): 352. https://doi.org/10.3390/v13020352; PMid:33672319 PMCid:PMC7926521
Bharadwaj A, Kempster E, Waisman DM. (2021, Dec 9). The Annexin A2/S100A10 Complex: The Mutualistic Symbiosis of Two Distinct Proteins. Biomolecules. 11(12): 1849. https://doi.org/10.3390/biom11121849; PMid:34944495 PMCid:PMC8699243
Bhatti A, DeLong RK. (2023, Jan 10). Nanoscale Interaction Mechanisms of Antiviral Activity. ACS Pharmacol Transl Sci. 6(2): 220-228. https://doi.org/10.1021/acsptsci.2c00195; PMid:36798473 PMCid:PMC9926521
Blount RE Jr, Morris JA, Savage RE. (1956, Jul). Recovery of cytopathogenic agent from chimpanzees with coryza. Proc Soc Exp Biol Med. 92(3): 544-549. https://doi.org/10.3181/00379727-92-22538; PMid:13359460
Broadbent L, Parke HG, Ferguson LJ, Millar A, Shields MD et al. (2020, Jan 27). Comparative Therapeutic Potential of ALX-0171 and Palivizumab against Respiratory Syncytial Virus Clinical Isolate Infection of Well-Differentiated Primary Pediatric Bronchial Epithelial Cell Cultures. Antimicrob Agents Chemother. 64(2): e02034-19. https://doi.org/10.1128/AAC.02034-19; PMid:31767728 PMCid:PMC6985719
Brookes DW, Coates M, Allen H, Daly L, Constant S, Huang S et al. (2018, Jun). Late therapeutic intervention with a respiratory syncytial virus L-protein polymerase inhibitor, PC786, on respiratory syncytial virus infection in human airway epithelium. Br J Pharmacol. 175(12): 2520-2534. Epub 2018 May 2. https://doi.org/10.1111/bph.14221; PMid:29579332 PMCid:PMC5980447
Bui TM, Wiesolek HL, Sumagin R. (2020, Sep). ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 108(3): 787-799. Epub 2020 Mar 17. https://doi.org/10.1002/JLB.2MR0220-549R; PMid:32182390 PMCid:PMC7977775
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O et al. (2023, Oct 4). Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel). 16(10): 1410. https://doi.org/10.3390/ph16101410; PMid:37895881 PMCid:PMC10610223
Cadena-Cruz C, Villarreal Camacho JL, De Ávila-Arias M, Hurtado-Gomez L, Rodriguez A, San-Juan-Vergara H. (2023, Sep). Respiratory syncytial virus entry mechanism in host cells: A general overview. Mol Microbiol. 120(3): 341-350. Epub 2023 Aug 3. https://doi.org/10.1111/mmi.15133; PMid:37537859
Cagno V, Gasbarri M, Medaglia C, Gomes D, Clement S et al. (2020, Nov 17). Sulfonated Nanomaterials with Broad-Spectrum Antiviral Activity Extending beyond Heparan Sulfate-Dependent Viruses. Antimicrob Agents Chemother. 64(12): e02001-20. https://doi.org/10.1128/AAC.02001-20; PMid:32988820 PMCid:PMC7674063
Cepika AM, Gagro A, Bace A, Tjesic-Drinkovic D, Kelecic J, Baricic-Voskresensky T et al. (2008, Mar). Expression of chemokine receptor CX3CR1 in infants with respiratory syncytial virus bronchiolitis. Pediatr Allergy Immunol. 19(2): 148-156. https://doi.org/10.1111/j.1399-3038.2007.00611.x; PMid:18257903
Challa S, Scott AD, Yuzhakov O, Zhou Y, Tiong-Yip CL, Gao N et al. (2015, Feb). Mechanism of action for respiratory syncytial virus inhibitor RSV604. Antimicrob Agents Chemother. 59(2): 1080-1087. Epub 2014 Dec 1. https://doi.org/10.1128/AAC.04119-14; PMid:25451060 PMCid:PMC4335855
Chapman J, Abbott E, Alber DG, Baxter RC, Bithell SK, Henderson EA et al. (2007, Sep). RSV604, a novel inhibitor of respiratory syncytial virus replication. Antimicrob Agents Chemother. 51(9): 3346-3353. Epub 2007 Jun 18. https://doi.org/10.1128/AAC.00211-07; PMid:17576833 PMCid:PMC2043207
Chen L, Liang J. (2020, Jul). An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C Mater Biol Appl. 112: 110924. Epub 2020 Apr 6. https://doi.org/10.1016/j.msec.2020.110924; PMid:32409074 PMCid:PMC7195146
Chirkova T, Lin S, Oomens AGP, Gaston KA, Boyoglu-Barnum S, Meng J et al. (2015, Sep). CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J Gen Virol. 96(9): 2543-2556. Epub 2015 Jun 25. https://doi.org/10.1099/vir.0.000218; PMid:26297201 PMCid:PMC4635495
Coates M, Brookes D, Kim YI, Allen H, Fordyce EAF, Meals EA et al. (2017, Aug 24). Preclinical Characterization of PC786, an Inhaled Small-Molecule Respiratory Syncytial Virus L Protein Polymerase Inhibitor. Antimicrob Agents Chemother. 61(9): e00737-17. https://doi.org/10.1128/AAC.00737-17; PMid:28652242 PMCid:PMC5571287
Cockerill GS, Angell RM, Bedernjak A, Chuckowree I, Fraser I, Gascon-Simorte J et al. (2021, Apr 8). Discovery of Sisunatovir (RV521), an Inhibitor of Respiratory Syncytial Virus Fusion. J Med Chem. 64(7): 3658-3676. Epub 2021 Mar 17. https://doi.org/10.1021/acs.jmedchem.0c01882; PMid:33729773
Córdova-Dávalos LE, Hernández-Mercado A, Barrón-García CB, Rojas-Martínez A, Jiménez M et al. (2022, Dec). Impact of genetic polymorphisms related to innate immune response on respiratory syncytial virus infection in children. Virus Genes. 58(6): 501-514. Epub 2022 Sep 9. https://doi.org/10.1007/s11262-022-01932-6; PMid:36085536 PMCid:PMC9462631
Currier MG, Lee S, Stobart CC, Hotard AL, Villenave R, Meng J et al. (2016, May 6). EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression. PLoS Pathog. 12(5): e1005622. https://doi.org/10.1371/journal.ppat.1005622; PMid:27152417 PMCid:PMC4859522
DeVincenzo J, Cass L, Murray A, Woodward K, Meals E, Coates M et al. (2022, Jun 15). Safety and Antiviral Effects of Nebulized PC786 in a Respiratory Syncytial Virus Challenge Study. J Infect Dis. 225(12): 2087-2096. https://doi.org/10.1093/infdis/jiaa716; PMid:33216113 PMCid:PMC9200148
Efstathiou C, Abidi SH, Harker J, Stevenson NJ. (2020, Dec). Revisiting respiratory syncytial virus's interaction with host immunity, towards novel therapeutics. Cell Mol Life Sci. 77(24): 5045-5058. Epub 2020 Jun 16. https://doi.org/10.1007/s00018-020-03557-0; PMid:32556372 PMCid:PMC7298439
Feng Z, Xu L, Xie Z. (2022, Feb 25). Receptors for Respiratory Syncytial Virus Infection and Host Factors Regulating the Life Cycle of Respiratory Syncytial Virus. Front Cell Infect Microbiol. 12: 858629. https://doi.org/10.3389/fcimb.2022.858629; PMid:35281439 PMCid:PMC8913501
Fujikane A, Sakamoto A, Fujikane R, Nishi A, Ishino Y et al. (2022, Jan 25). Ephedrae Herba and Cinnamomi Cortex interactions with G glycoprotein inhibit respiratory syncytial virus infectivity. Commun Biol. 5(1): 94. https://doi.org/10.1038/s42003-022-03046-z; PMid:35079103 PMCid:PMC8789818
GBD 2016 Lower Respiratory Infections Collaborators. (2018, Nov). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 18(11): 1191-1210. Epub 2018 Sep 19. https://doi.org/10.1016/S1473-3099(18)30310-4; PMid:30243584
Golan-Tripto I, Danino D, De Waal L, Akel K, Dizitzer-Hillel Y, Tal A et al. (2024, Aug). Viral load in hospitalized infants with respiratory syncytial virus bronchiolitis: a three-way comparative analysis. Eur J Pediatr. 183(8): 3471-3478. Epub 2024 May 23. https://doi.org/10.1007/s00431-024-05614-3; PMid:38780651
Gou D, Mishra A, Weng T, Su L, Chintagari NR, Wang Z et al. (2008, May 9). Annexin A2 interactions with Rab14 in alveolar type II cells. J Biol Chem. 283(19): 13156-13164. Epub 2008 Mar 10. https://doi.org/10.1074/jbc.M801532200; PMid:18332131 PMCid:PMC2442313
Green G, Johnson SM, Costello H, Brakel K, Harder O, Oomens AG et al. (2021, Jul 26). CX3CR1 Is a Receptor for Human Respiratory Syncytial Virus in Cotton Rats. J Virol. 95(16): e0001021. Epub 2021 Jul 26. https://doi.org/10.1128/JVI.00010-21; PMid:34037420 PMCid:PMC8312862
Griffiths CD, Bilawchuk LM, McDonough JE, Jamieson KC, Elawar F, Cen Y et al. (2020, Jul). IGF1R is an entry receptor for respiratory syncytial virus. Nature. 583(7817): 615-619. Epub 2020 Jun 3. doi: 10.1038/s41586-020-2369-7. Erratum in: Nature. 2020 Jul; 583(7815): E22. https://doi.org/10.1038/s41586-020-2437-z; PMid:32555542
Guo Q, Qian J, Zeng Q, Zhang L, Zhu X, Zheng J et al. (2023, Mar 15). Characterization of an orally available respiratory syncytial virus L protein polymerase inhibitor DZ7487. Am J Transl Res. 15(3): 1680-1692. PMID: 37056816; PMCID: PMC10086872.
Hijano DR, Vu LD, Kauvar LM, Tripp RA, Polack FP, Cormier SA. (2019, Mar 26). Role of Type I Interferon (IFN) in the Respiratory Syncytial Virus (RSV) Immune Response and Disease Severity. Front Immunol. 10: 566. https://doi.org/10.3389/fimmu.2019.00566; PMid:30972063 PMCid:PMC6443902
Hoover J, Eades S, Lam WM. (2018, Sep-Oct). Pediatric Antiviral Stewardship: Defining the Potential Role of Ribavirin in Respiratory Syncytial Virus-Associated Lower Respiratory Illness. J Pediatr Pharmacol Ther. 23(5): 372-378. https://doi.org/10.5863/1551-6776-23.5.372; PMid:30429691 PMCid:PMC6213624
Huang LM, Schibler A, Huang YC, Tai A, Chi H, Chieng CH et al. (2023, Jul 25). Safety and efficacy of AK0529 in respiratory syncytial virus-infected infant patients: A phase 2 proof-of-concept trial. Influenza Other Respir Viruses. 17(7): e13176. https://doi.org/10.1111/irv.13176; PMid:37502622 PMCid:PMC10368966
Hu Y, Yang L, Lai Y. (2023, Jun). Recent findings regarding the synergistic effects of emodin and its analogs with other bioactive compounds: Insights into new mechanisms. Biomed Pharmacother. 162: 114585. Epub 2023 Mar 28. https://doi.org/10.1016/j.biopha.2023.114585; PMid:36989724
Jenkins VA, Hoet B, Hochrein H, De Moerlooze L. (2023, Feb 7). The Quest for a Respiratory Syncytial Virus Vaccine for Older Adults: Thinking beyond the F Protein. Vaccines (Basel). 11(2): 382. https://doi.org/10.3390/vaccines11020382; PMid:36851260 PMCid:PMC9963583
Jorquera PA, Mathew C, Pickens J, Williams C, Luczo JM, Tamir S et al. (2019, Feb 5). Verdinexor (KPT-335), a Selective Inhibitor of Nuclear Export, Reduces Respiratory Syncytial Virus Replication In Vitro. J Virol. 93(4): e01684-18. https://doi.org/10.1128/JVI.01684-18; PMid:30541831 PMCid:PMC6364025
Joudeh N, Linke D. (2022, Jun 7). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 20(1): 262. https://doi.org/10.1186/s12951-022-01477-8; PMid:35672712 PMCid:PMC9171489
Juliana A, Zonneveld R, Plötz FB, van Meurs M, Wilschut J. (2020, Feb). Neutrophil-endothelial interactions in respiratory syncytial virus bronchiolitis: An understudied aspect with a potential for prediction of severity of disease. J Clin Virol. 123: 104258. Epub 2019 Dec 31. https://doi.org/10.1016/j.jcv.2019.104258; PMid:31931445
Karnik SC, Cook R, Gorman SH, Bakhtiar R. (2018, May). Liquid chromatographic-tandem mass spectrometry assay for the quantification of MDT-637 in human nasal wash. Biomed Chromatogr. 2: e4271. Epub ahead of print. https://doi.org/10.1002/bmc.4271; PMid:29722051
Karunakaran G, Sudha KG, Ali S, Cho EB. (2023, Jun 2). Biosynthesis of Nanoparticles from Various Biological Sources and Its Biomedical Applications. Molecules. 28(11): 4527. https://doi.org/10.3390/molecules28114527; PMid:37299004 PMCid:PMC10254633
Kim HN, Hwang J, Yoon SY, Lim CS, Cho Y et al. (2023, Apr 6). Molecular characterization of human respiratory syncytial virus in Seoul, South Korea, during 10 consecutive years, 2010-2019. PLoS One. 18(4): e0283873. https://doi.org/10.1371/journal.pone.0283873; PMid:37023101 PMCid:PMC10079039
Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti P, Helenius A. (2013). Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog. 9(4): e1003309. Epub 2013 Apr 11. https://doi.org/10.1371/journal.ppat.1003309; PMid:23593008 PMCid:PMC3623752
Lai KM, Lee WL. (2022, Jun). The roles of epidermal growth factor receptor in viral infections. Growth Factors. 40(1-2): 46-72. Epub 2022 Apr 19. https://doi.org/10.1080/08977194.2022.2063123; PMid:35439043
Li CM, Zheng LL, Yang XX, Wan XY, Wu WB, Zhen SJ et al. (2016, Jan). DNA-AuNP networks on cell membranes as a protective barrier to inhibit viral attachment, entry and budding. Biomaterials. 77: 216-226. Epub 2015 Nov 7. https://doi.org/10.1016/j.biomaterials.2015.11.008; PMid:26606447 PMCid:PMC7112435
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL et al. (2024, Mar 1). Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol. 15: 1338096. https://doi.org/10.3389/fimmu.2024.1338096; PMid:38495892 PMCid:PMC10940417
Li Y, Wang X, Blau DM, Caballero MT, Feikin DR, Gill CJ et al. (2022, May 28). Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet. 399(10340): 2047-2064. Epub 2022 May 19. https://doi.org/10.1016/S0140-6736(22)00478-0; PMid:35598608
Li Y, Zhai Y, Lin Y, Lu C, He Z, Wu S et al. (2023, Mar 31). Epidemiology of respiratory syncytial virus in hospitalized children with community-acquired pneumonia in Guangzhou: a 10-year study. J Thorac Dis. 15(3): 967-976. Epub 2023 Feb 16. https://doi.org/10.21037/jtd-22-331; PMid:37065548 PMCid:PMC10089879
Manothummetha K, Mongkolkaew T, Tovichayathamrong P, Boonyawairote R, Meejun T, Srisurapanont K et al. (2023, Oct). Ribavirin treatment for respiratory syncytial virus infection in patients with haematologic malignancy and haematopoietic stem cell transplant recipients: a systematic review and meta-analysis. Clin Microbiol Infect. 29(10): 1272-1279. Epub 2023 Apr 26. https://doi.org/10.1016/j.cmi.2023.04.021; PMid:37116860
Martin EW, Iserman C, Olety B, Mitrea DM, Klein IA. (2024, Feb 15). Biomolecular Condensates as Novel Antiviral Targets. J Mol Biol. 436(4): 168380. Epub 2023 Dec 5. https://doi.org/10.1016/j.jmb.2023.168380; PMid:38061626
Mathew C, Tamir S, Tripp RA, Ghildyal R. (2021, Sep 28). Reversible disruption of XPO1-mediated nuclear export inhibits respiratory syncytial virus (RSV) replication. Sci Rep. 11(1): 19223. https://doi.org/10.1038/s41598-021-98767-2; PMid:34584169 PMCid:PMC8479129
Mazela J, Jackowska T, Czech M, Helwich E, Martyn O, Aleksiejuk P et al. (2024, Apr 29). Epidemiology of Respiratory Syncytial Virus Hospitalizations in Poland: An Analysis from 2015 to 2023 Covering the Entire Polish Population of Children Aged under Five Years. Viruses. 16(5): 704. https://doi.org/10.3390/v16050704; PMid:38793586 PMCid:PMC11126078
Mehranfar A, Izadyar M. (2020, Dec 17). Theoretical Design of Functionalized Gold Nanoparticles as Antiviral Agents against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Phys Chem Lett. 11(24): 10284-10289. Epub 2020 Nov 23. https://doi.org/10.1021/acs.jpclett.0c02677; PMid:33226815
Morone MV, Chianese A, Dell'Annunziata F, Folliero V, Lamparelli EP, Della Porta G et al. (2024, Apr 18). Ligand-Free Silver Nanoparticles: An Innovative Strategy against Viruses and Bacteria. Microorganisms. 12(4): 820. https://doi.org/10.3390/microorganisms12040820; PMid:38674764 PMCid:PMC11052337
Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y et al. (2019, Aug 8). Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses. 11(8): 732. https://doi.org/10.3390/v11080732; PMid:31398832 PMCid:PMC6723559
News medical.net. (2022). Researchers-identify-a-novel-RSV-variant-associated-with-prolonged-infection. URL: https://www.news-medical.net/news/20221120/Researchers-identify-a-novel-RSV-variant-associated-with-prolonged-infection.aspx.
Noh SS, Shin HJ. (2023, Dec 9). Role of Virus-Induced EGFR Trafficking in Proviral Functions. Biomolecules. 13(12): 1766. https://doi.org/10.3390/biom13121766; PMid:38136637 PMCid:PMC10741569
Noh SS, Shin HJ. (2023, Dec 13). RSV Induces Activation of Intracellular EGFR on the Mitochondrial Membrane for Virus Propagation. Int J Mol Sci. 24(24): 17431. https://doi.org/10.3390/ijms242417431; PMid:38139259 PMCid:PMC10744162
Oey A, McClure M, Symons JA, Chanda S, Fry J, Smith PF et al. (2023, Jul 19). Lumicitabine, an orally administered nucleoside analog, in infants hospitalized with respiratory syncytial virus (RSV) infection: Safety, efficacy, and pharmacokinetic results. PLoS One. 18(7): e0288271. https://doi.org/10.1371/journal.pone.0288271; PMid:37467213 PMCid:PMC10355467
Pålsson SA, Dondalska A, Bergenstråhle J, Rolfes C, Björk A, Sedano L et al. (2020, Dec 8). Single-Stranded Oligonucleotide-Mediated Inhibition of Respiratory Syncytial Virus Infection. Front Immunol. 11: 580547. https://doi.org/10.3389/fimmu.2020.580547; PMid:33363532 PMCid:PMC7752805
Pålsson SA, Sekar V, Kutter C, Friedländer MR, Spetz AL. (2022, May 26). Inhibition of Respiratory Syncytial Virus Infection by Small Non-Coding RNA Fragments. Int J Mol Sci. 23(11): 5990. https://doi.org/10.3390/ijms23115990; PMid:35682669 PMCid:PMC9180592
Pan L, Cheng C, Duan P, Chen K, Wu Y, Wu Z. (2021, Aug 12). XPO1/CRM1 is a promising prognostic indicator for neuroblastoma and represented a therapeutic target by selective inhibitor verdinexor. J Exp Clin Cancer Res. 40(1): 255. https://doi.org/10.1186/s13046-021-02044-z; PMid:34384466 PMCid:PMC8359549
Patterson J. (2023, May). Small interfering RNA (siRNA)-based therapeutics. Drug Ther Bull. 61(5): 72-76. Epub 2023 Apr 25. https://doi.org/10.1136/dtb.2023.000004; PMid:37098440
Pickens JA, Tripp RA. (2018, Jan 21). Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses. Viruses. 10(1): 48. https://doi.org/10.3390/v10010048; PMid:29361733 PMCid:PMC5795461
Porter DP, Guo Y, Perry J, Gossage DL, Watkins TR et al. (2020, Aug 20). Assessment of Drug Resistance during Phase 2b Clinical Trials of Presatovir in Adults Naturally Infected with Respiratory Syncytial Virus. Antimicrob Agents Chemother. 64(9):e02312-19. https://doi.org/10.1128/AAC.02312-19; PMid:32071058 PMCid:PMC7449164
Qin S, Huang X, Qu S. (2022, Jun 23). Baicalin Induces a Potent Innate Immune Response to Inhibit Respiratory Syncytial Virus Replication via Regulating Viral Non-Structural 1 and Matrix RNA. Front Immunol. 13: 907047. https://doi.org/10.3389/fimmu.2022.907047; PMid:35812414 PMCid:PMC9259847
Ramaekers K, Rector A, Cuypers L, Lemey P, Keyaerts E, Van Ranst M. (2020, Jul 24). Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evol. 6(2): veaa052. https://doi.org/10.1093/ve/veaa052; PMid:33072402 PMCid:PMC7552823
Reina J, Iglesias C. (2023, Feb). EDP-938, a new antiviral with inhibitory activity against the nucleoprotein of the respiratory syncytial virus. Rev Esp Quimioter. 36(1): 26-29. Epub 2022 Nov 21. https://doi.org/10.37201/req/096.2022; PMid:36401806 PMCid:PMC9910671
Ren L, Lin L, Zhang H, Wang Q, Cheng Y, Liu Q et al. (2023, Feb 2). Epidemiological and clinical characteristics of respiratory syncytial virus and influenza infections in hospitalized children before and during the COVID-19 pandemic in Central China. Influenza Other Respir Viruses. 17(2): e13103. https://doi.org/10.1111/irv.13103; PMid:36824393 PMCid:PMC9895987
Risso-Ballester J, Galloux M, Cao J, Le Goffic R, Hontonnou F, Jobart-Malfait A et al. (2021, Jul). A condensate-hardening drug blocks RSV replication in vivo. Nature. 595(7868): 596-599. Epub 2021 Jul 7. https://doi.org/10.1038/s41586-021-03703-z; PMid:34234347
Sabbah DA, Hajjo R, Sweidan K. (2020). Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr Top Med Chem. 20(10): 815-834. https://doi.org/10.2174/1568026620666200303123102; PMid:32124699
Sake SM, Zhang X, Rajak MK, Urbanek-Quaing M, Carpentier A, Gunesch AP et al. (2024, Feb 8). Drug repurposing screen identifies lonafarnib as respiratory syncytial virus fusion protein inhibitor. Nat Commun. 15(1): 1173. https://doi.org/10.1038/s41467-024-45241-y; PMid:38332002 PMCid:PMC10853176
Schaerlaekens S, Jacobs L, Stobbelaar K, Cos P, Delputte P. (2024, Jan 18). All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines (Basel). 12(1): 97. https://doi.org/10.3390/vaccines12010097; PMid:38250910 PMCid:PMC10819635
Sevendal ATK, Hurley S, Bartlett AW, Rawlinson W, Walker GJ. (2024, Sep). Systematic Review of the Efficacy and Safety of RSV-Specific Monoclonal Antibodies and Antivirals in Development. Rev Med Virol. 34(5): e2576. https://doi.org/10.1002/rmv.2576; PMid:39209729
Shang Z, Tan S, Ma D. (2021, Sep 27). Respiratory syncytial virus: from pathogenesis to potential therapeutic strategies. Int J Biol Sci. 17(14): 4073-4091. https://doi.org/10.7150/ijbs.64762; PMid:34671221 PMCid:PMC8495404
Shan S, Zhang W, Gao H, Huang PY, Du Z, Bai Y et al. (2024, Apr 25). Global Seasonal Activities of Respiratory Syncytial Virus Before the Coronavirus Disease 2019 Pandemic: A Systematic Review. Open Forum Infect Dis. 11(5): ofae238. https://doi.org/10.1093/ofid/ofae238; PMid:38770210 PMCid:PMC11103620
Shao Q, Liu T, Wang W, Liu T, Jin X, Chen Z. (2022, May 4). Promising Role of Emodin as Therapeutics to Against Viral Infections. Front Pharmacol. 13: 902626. https://doi.org/10.3389/fphar.2022.902626; PMid:35600857 PMCid:PMC9115582
Shi H, Ren K, Lv B, Zhang W, Zhao Y et al. (2016, Oct 21). Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Sci Rep. 6: 35851. https://doi.org/10.1038/srep35851; PMid:27767097 PMCid:PMC5073294
Stevaert A, Groaz E, Naesens L. (2022, Dec). Nucleoside analogs for management of respiratory virus infections: mechanism of action and clinical efficacy. Curr Opin Virol. 57: 101279. Epub 2022 Nov 17. https://doi.org/10.1016/j.coviro.2022.101279; PMid:36403338 PMCid:PMC9671222
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. (2023, Jan 25). Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses. 15(2): 341. https://doi.org/10.3390/v15020341; PMid:36851554 PMCid:PMC9960070
Tejada S, Martinez-Reviejo R, Karakoc HN, Peña-López Y, Manuel O, Rello J. (2022, Sep). Ribavirin for Treatment of Subjects with Respiratory Syncytial Virus-Related Infection: A Systematic Review and Meta-Analysis. Adv Ther. 39(9): 4037-4051. Epub 2022 Jul 25. https://doi.org/10.1007/s12325-022-02256-5; PMid:35876973
Urban J, Suchankova M, Ganovska M, Leksa V, Sandor F, Tedlova E et al. (2021, Jun 11). The Role of CX3CL1 and ADAM17 in Pathogenesis of Diffuse Parenchymal Lung Diseases. Diagnostics (Basel). 11(6): 1074. https://doi.org/10.3390/diagnostics11061074; PMid:34208027 PMCid:PMC8230701
Ventre K, Randolph AG. (2007, Jan 24). Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children. Cochrane Database Syst Rev. (1): CD000181. doi: 10.1002/14651858.CD000181.pub3. Update in: Cochrane Database Syst Rev. 2010 May 12; (5): CD000181. PMID: 17253446. https://doi.org/10.1002/14651858.CD000181.pub4
Verwey C, Dangor Z, Madhi SA. (2024, Mar). Approaches to the Prevention and Treatment of Respiratory Syncytial Virus Infection in Children: Rationale and Progress to Date. Paediatr Drugs. 26(2): 101-112. Epub 2023 Nov 30. https://doi.org/10.1007/s40272-023-00606-6; PMid:38032456 PMCid:PMC10891269
Wang CC, Wu SM, Li HW, Chang HT. (2016, Jun 16). Biomedical Applications of DNA-Conjugated Gold Nanoparticles. Chembiochem. 17(12): 1052-1062. Epub 2016 Apr 8. https://doi.org/10.1002/cbic.201600014; PMid:26864481
Wang Y, Jia M, Gao Y, Zhao B. (2023, Aug 10). Multiplex Quantitative Analysis of 9 Compounds of Scutellaria baicalensis Georgi in the Plasma of Respiratory Syncytial Virus-Infected Mice Based on HPLC-MS/MS and Pharmacodynamic Effect Correlation Analysis. Molecules. 28(16): 6001. https://doi.org/10.3390/molecules28166001; PMid:37630252 PMCid:PMC10460054
Xiong Y, Tan G, Tao K, Zhou Y, Li J, Ou W et al. (2024, May 16). Emodin inhibits respiratory syncytial virus entry by interactions with fusion protein. Front Microbiol. 15: 1393511. https://doi.org/10.3389/fmicb.2024.1393511; PMid:38817970 PMCid:PMC11137228
Xiong Y, Tao K, Li T, Ou W, Zhou Y, Zhang W et al. (2024, Feb 19). Resveratrol inhibits respiratory syncytial virus replication by targeting heparan sulfate proteoglycans. Food Funct. 15(4): 1948-1962. https://doi.org/10.1039/D3FO05131E; PMid:38270052
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B et al. (2024, Apr 18). Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci. 25(8): 4451. https://doi.org/10.3390/ijms25084451; PMid:38674036 PMCid:PMC11050295
Zhang HL, Li YX, Zhou AF, Li Y. (2022). New Frontier in Antiviral Drugs for Disorders of the Respiratory System. Recent Adv Antiinfect Drug Discov. 17(1): 2-12. https://doi.org/10.2174/1574891X16666220416164740; PMid:35430978
Zhivaki D, Lemoine S, Lim A, Morva A, Vidalain PO, Schandene L et al. (2017, Feb 21). Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity. Immunity. 46(2): 301-314. https://doi.org/10.1016/j.immuni.2017.01.010; PMid:28228284 PMCid:PMC7128247
Zhuang X, Gallo G, Sharma P, Ha J, Magri A, Borrmann H et al. (2023, Dec 18). Hypoxia inducible factors inhibit respiratory syncytial virus infection by modulation of nucleolin expression. iScience. 27(1): 108763. https://doi.org/10.1016/j.isci.2023.108763; PMid:38261926 PMCid:PMC10797196
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Modern pediatrics. Ukraine
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The policy of the Journal “MODERN PEDIATRICS. UKRAINE” is compatible with the vast majority of funders' of open access and self-archiving policies. The journal provides immediate open access route being convinced that everyone – not only scientists - can benefit from research results, and publishes articles exclusively under open access distribution, with a Creative Commons Attribution-Noncommercial 4.0 international license (СС BY-NC).
Authors transfer the copyright to the Journal “MODERN PEDIATRICS. UKRAINE” when the manuscript is accepted for publication. Authors declare that this manuscript has not been published nor is under simultaneous consideration for publication elsewhere. After publication, the articles become freely available on-line to the public.
Readers have the right to use, distribute, and reproduce articles in any medium, provided the articles and the journal are properly cited.
The use of published materials for commercial purposes is strongly prohibited.