Rational antibiotic therapy for respiratory tract infections in children: modern recommendations

Authors

DOI:

https://doi.org/10.15574/SP.2024.137.153

Keywords:

children, diseases of the respiratory tract, antibacterial therapy, azithromycin

Abstract

Diseases of the respiratory tract remain relevant in pediatrics.

Purpose - to provide modern recommendations for the prescription of rational antibiotic therapy for respiratory tract infections in children to improve clinical practice and preserve the effectiveness of antibacterial drugs.

The principles of optimal use of antibacterial drugs in the treatment of respiratory diseases in pediatric practice are discussed. The data of the study of the pharmacological profile of azithromycin, its effectiveness and safety in the treatment of respiratory diseases are presented. A detailed analysis of the drug's spectrum of action, its pharmacokinetics, and the possibility of side effects is provided. The study includes the results of clinical trials and meta-analyses, emphasizing the importance of choosing the right dosage and duration of treatment.

The presented results contribute to the understanding of optimal approaches to the use of azithromycin in the treatment of respiratory diseases in children, contributing to the improvement of clinical practice and maintaining the effectiveness of antibiotic therapy.

No conflict of interests was declared by the author.

References

Bacharier LB et al. (2015). Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses. JAMA. 314: 2034. https://doi.org/10.1001/jama.2015.13896; PMid:26575060 PMCid:PMC4757487

Beigelman A, Isaacson-Schmid M, Sajol G et al. (2015). Randomized trial to evaluate azithromycin's effects on serum and upper airway IL-8 levels and recurrent wheezing in infants with respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol. 135 (5): 1171-8.e1. https://doi.org/10.1016/j.jaci.2014.10.001; PMid:25458910 PMCid:PMC4426225

Chai G, Governale L, McMahon AW et al. (2012). Trends of outpatient prescription drug use in US children, 2002-2010. Pediatrics. 130 (1): 23-31. https://doi.org/10.1542/peds.2011-2879; PMid:22711728

Douglas LC, Choi J, Esteban‐Cruciani N. (2020). Azithromycin treatment in children hospitalized with asthma: a retrospective cohort study. J Asthma. 57: 525‐531. https://doi.org/10.1080/02770903.2019.1590590; PMid:30929521

Dziublyk OIa. (2016). Nehospitalni infektsii nyzhnikh dykhalnykh shliakhiv. Vinnytsia: TOV «Merkiuri-Podillia»: 255.

EURO WHO. (2011). World health day 2011 antibiotic resistance no action today nocure tomorrow. Past themes of worldhealth day. URL: https://www.euro.who.int/ru/about-us/whd/past-themes-of-worldhealth-day/world-health-day-2011-antibiotic-resistance-no-action-today-nocure-tomorrow.

Feshchenko YuI, Dziublyk OIa. (2020). Nehospitalna pnevmoniia. K.: Samit-knyha: 468.

Firth A, Prathapan P. (2020). Azithromycin: The First Broad-spectrum Therapeutic. Eur J Med Chem. 1; 207: 112739. https://doi.org/10.1016/j.ejmech.2020.112739; PMid:32871342 PMCid:PMC7434625

Gerber JS. (2021). Antibiotic Stewardship in Pediatrics. 147 (1): e2020040295. https://doi.org/10.1542/peds.2020-040295; PMid:33372120

Ghimire JJ, Jat KR, Sankar J. (2022). Azithromycin for Poorly Controlled Asthma in Children: A Randomized Controlled Trial. Chest. 161 (6): 1456-1464. https://doi.org/10.1016/j.chest.2022.02.025; PMid:35202621

Hahn DL. (2022). Azithromycin Response in Uncontrolled Asthma in Children: Binary or Continuous? Chest. 162 (1): e61. https://doi.org/10.1016/j.chest.2022.02.055; PMid:35809954

Hardman SJ, Shackley FM, Ugonna K, Darton TC et al. (2023). Seasonal Azithromycin use in paediatric protracted bacterial bronchitis does not promote antimicrobial resistance but does modulate the nasopharyngeal microbiome. Int. J. Mol. Sci. 24: 16053. https://doi.org/10.3390/ijms242216053; PMid:38003242 PMCid:PMC10671346

Heidary M, Ebrahimi Samangani A, Kargari A, Kiani Nejad A, Yashmi I, Motahar M et al. (2022). Mechanism of action, resistance, synergism, and clinical implications of azithromycin. J Clin Lab Anal. 36 (6): e24427. https://doi.org/10.1002/jcla.24427; PMid:35447019 PMCid:PMC9169196

Hersh AL, Shapiro DJ, Pavia AT, Shah SS. (2011). Antibiotic prescribing in ambulatory pediatrics in the United States. Pediatrics. 128 (6): 1053-1061. https://doi.org/10.1542/peds.2011-1337; PMid:22065263

Hill AT, Sullivan AL, Chalmers JD et al. (2019). British Thoracic Society Guideline for bronchiectasis in adults. Thorax. 74 (S1): 1-69. https://doi.org/10.1136/thoraxjnl-2018-212463; PMid:30545985

Ivaska L, Barkoff AM, Mertsola J, He Q. (2022). Macrolide Resistance in Bordetella pertussis: Current Situation and Future Challenges. Antibiotics (Basel). 7; 11 (11): 1570. https://doi.org/10.3390/antibiotics11111570; PMid:36358225 PMCid:PMC9686491

Khaytovich, N. (2022). Rational Antibiotic Therapy of Respiratory Infections in Children. Child's health. (8.51): 139-146. https://doi.org/10.22141/2224-0551.8.51.2013.85052

Klingmann V, Vallet T, Münch J et al. (2023). Dosage Forms Suitability in Pediatrics: Acceptability of Antibiotics in a German Hospital. Antibiotics (Basel). 7; 12 (12): 1709. https://doi.org/10.3390/antibiotics12121709; PMid:38136743 PMCid:PMC10740640

Kobbernagel HE, Buchvald FF, Haarman EG et al. (2020). Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): A multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 8: 493-505. https://doi.org/10.1016/S2213-2600(20)30058-8; PMid:32380069

Kramariev S. (2021). Rational Antibiotic Therapy of Respiratory Tract Diseases in Сhildren. Child's health. (1.69): 114-118. https://doi.org/10.22141/2224-0551.1.69.2016.73728

Kramarov SO, Seriakova IYu. (2023). Azithromycin in the clinic of infectious diseases. Modern Pediatrics. Ukraine. 1 (129): 106-113. https://doi.org/10.15574/SP.2023.129.106

Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ et al. (2021, Oct). Nonantimicrobial actions of macrolides: overview and perspectives for future development. Pharm. Rev. 73: 1404-1433. https://doi.org/10.1124/pharmrev.121.000300; PMid:34716226

Langford BJ, So M, Raybardhan S, Leung V et al. (2021). Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 27 (4): 520-531. https://doi.org/10.1016/j.cmi.2020.12.018; PMid:33418017 PMCid:PMC7785281

Luisi F, Roza CA, Silveira VD et al. (2020). Azithromycin administered for acute bronchiolitis may have a protective effect on subsequent wheezing. J Bras Pneumol. 2; 46 (3): e20180376. https://doi.org/10.36416/1806-3756/e20180376; PMid:32130359 PMCid:PMC8650811

Martіnez-Gonzalez NA, Coenen S, Plate A et al. (2017). The impact of interventions to improve the quality of prescribing and use of antibiotics in primary care patients with respiratory tract infections: a systematic review protocol. BMJ Open. 7: e01625. https://doi.org/10.1136/bmjopen-2017-016253; PMid:28611111 PMCid:PMC5726136

McMullan BJ, Mostaghim M. (2015). Prescribing azithromycin. Aust Prescr. 38 (3): 87-89. https://doi.org/10.18773/austprescr.2015.030; PMid:26648627 PMCid:PMC4653965

Niankovskyi SL. (2019). Ratsionalna antybiotykoterapiia u ditei: suchasni rekomendatsii. Zdorov'ia Ukrainy. Tematychnyi nomer «Pediatriia». 3: 50.

Nori P, Cowman K, Chen V et al. (2021). Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect Control Hosp Epidemiol. 42 (1): 84-88. https://doi.org/10.1017/ice.2020.368; PMid:32703320 PMCid:PMC7417979

Paff T, Omran H, Nielsen KG, Haarman EG. (2021). Current and Future Treatments in Primary Ciliary Dyskinesia. Int. J. Mol. Sci. 22: 9834. https://doi.org/10.3390/ijms22189834; PMid:34575997 PMCid:PMC8470068

Pan X, Liu Y, Luo J et al. (2022). The efficacy and safety of azithromycin in treatment for childhood asthma: A systematic review and meta-analysis. Pediatr Pulmonol. 57 (3): 631-639. https://doi.org/10.1002/ppul.25783; PMid:34862766

Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ et al. (2014). Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 143 (2): 225-245. https://doi.org/10.1016/j.pharmthera.2014.03.003; PMid:24631273

Plewig G, Schopf E. (1975). Anti-inflammatory effects of antimicrobial agents: an in vivo study. J. Invest. Dermatol. 65 (6): 532-536. https://doi.org/10.1111/1523-1747.ep12610281; PMid:1194716

Salmanov AH. (2016). Stratehichnyi plan dii Ukrainy z profilaktyky infektsii, pov'iazanykh z nadanniam medychnoi dopomohy ta antymikrobnoi rezystentnosti. K.: Ahrar Media Hrup: 380.

Smieszek T, Pouwels KB, Dolk FCK et al. (2018). Potential for reducing inappropriate antibiotic prescribing in English primary care. J Antimicrob Chemother. 73: 36-43. https://doi.org/10.1093/jac/dkx500; PMid:29490058 PMCid:PMC5890667

Song G, Zhang Y, Yu S et al. (2023). Efficacy and safety of macrolides in the treatment of children with bronchiectasis: a meta-analysis. Pediatr Res. 94: 1600-1608. https://doi.org/10.1038/s41390-023-02591-5; PMid:37237074

Stokholm J, Chawes BL, Vissing NH et al. (2016). Azithromycin for episodes with asthma-like symptoms in young children aged 1-3 years: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 4 (1): 19-26. https://doi.org/10.1016/S2213-2600(15)00500-7; PMid:26704020

Sun J, Li Y. (2022). Long-term, low-dose macrolide antibiotic treatment in pediatric chronic airway diseases. Pediatr Res. 91: 1036-1042. https://doi.org/10.1038/s41390-021-01613-4; PMid:34120139 PMCid:PMC9122820

Swainston HT, Keam SJ. (2007). Azithromycin extended release: a review of its use in the treatment of acute bacterial sinusitis and community‐acquired pneumonia in the US. Drugs. 67: 773‐792. https://doi.org/10.2165/00003495-200767050-00010; PMid:17385947

Telegram-kanal «Pediatriia ta alerholohiia z Kryvopustovymy». URL: https://t.me/+rl336kEWUOAxNWJi.

Thomas D, Gibson PG. (2022). Long-term, low-dose Azithromycin for uncontrolled asthma in children. Chest. 162 (1): 27-29. https://doi.org/10.1016/j.chest.2022.03.035; PMid:35809932

Ukkonen RM, Renko M, Kuitunen I. (2023). Azithromycin for acute bronchiolitis and wheezing episodes in children - a systematic review with meta-analysis. Pediatr Res. 56: 58Z. https://doi.org/10.1038/s41390-023-02953-z; PMid:38066246

Ukuhor HO. (2021). The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health. 14 (1): 53-60. https://doi.org/10.1016/j.jiph.2020.10.018; PMid:33341485 PMCid:PMC7831651

Vallet T, Bensouda Y, Saito J et al. (2021). Exploring Acceptability Drivers of Oral Antibiotics in Children: Findings from an International Observational Study. Pharmaceutics. 13: 1721. https://doi.org/10.3390/pharmaceutics13101721; PMid:34684014 PMCid:PMC8537532

World Health Organisation. (2005). Antimicrobial resistance: a threat to global health security. URL: http://apps.who.int/iris/handle/10665/20247.

Yang J. (2020). Mechanism of azithromycin in airway diseases. J Int Med Res. 48 (6): 300060520932104. https://doi.org/10.1177/0300060520932104; PMid:32589092 PMCid:PMC7323306

Zeng L. (2020). Safety of azithromycin in pediatrics: a systematic review and analysis. Eur J Clin Pharmacol. 76 (12): 1709-1721. https://doi.org/10.1007/s00228-020-02956-3; PMid:32681202 PMCid:PMC7661415

Zimmermann P, Ziesenitz VC, Curtis N, Ritz N. (2018). The Immunomodulatory Effects of Macrolides-A Systematic Review of the Underlying Mechanisms. Front Immunol. 13; 9: 302. https://doi.org/10.3389/fimmu.2018.00302; PMid:29593707 PMCid:PMC5859047

Zupanets IA, Bezuhla NP, Lybina VV, Kudrys YV, Kuvaiskov YuH. (2013). Otsinka vzaiemozaminnosti Azymedu - bioekvivalentnist dovedena! Liky Ukrainy. 1 (167): 1-4.

Тsai TA, Tsai CK, Kuo KC, Yu HR. (2021). Rational stepwise approach for Mycoplasma pneumoniae pneumonia in children. J Microbiol Immunol Infect. 54 (4): 557-565. https://doi.org/10.1016/j.jmii.2020.10.002; PMid:33268306

Published

2024-02-28