Rational antibiotic therapy for respiratory tract infections in children: modern recommendations
DOI:
https://doi.org/10.15574/SP.2024.137.153Keywords:
children, diseases of the respiratory tract, antibacterial therapy, azithromycinAbstract
Diseases of the respiratory tract remain relevant in pediatrics.
Purpose - to provide modern recommendations for the prescription of rational antibiotic therapy for respiratory tract infections in children to improve clinical practice and preserve the effectiveness of antibacterial drugs.
The principles of optimal use of antibacterial drugs in the treatment of respiratory diseases in pediatric practice are discussed. The data of the study of the pharmacological profile of azithromycin, its effectiveness and safety in the treatment of respiratory diseases are presented. A detailed analysis of the drug's spectrum of action, its pharmacokinetics, and the possibility of side effects is provided. The study includes the results of clinical trials and meta-analyses, emphasizing the importance of choosing the right dosage and duration of treatment.
The presented results contribute to the understanding of optimal approaches to the use of azithromycin in the treatment of respiratory diseases in children, contributing to the improvement of clinical practice and maintaining the effectiveness of antibiotic therapy.
No conflict of interests was declared by the author.
References
Bacharier LB et al. (2015). Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses. JAMA. 314: 2034. https://doi.org/10.1001/jama.2015.13896; PMid:26575060 PMCid:PMC4757487
Beigelman A, Isaacson-Schmid M, Sajol G et al. (2015). Randomized trial to evaluate azithromycin's effects on serum and upper airway IL-8 levels and recurrent wheezing in infants with respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol. 135 (5): 1171-8.e1. https://doi.org/10.1016/j.jaci.2014.10.001; PMid:25458910 PMCid:PMC4426225
Chai G, Governale L, McMahon AW et al. (2012). Trends of outpatient prescription drug use in US children, 2002-2010. Pediatrics. 130 (1): 23-31. https://doi.org/10.1542/peds.2011-2879; PMid:22711728
Douglas LC, Choi J, Esteban‐Cruciani N. (2020). Azithromycin treatment in children hospitalized with asthma: a retrospective cohort study. J Asthma. 57: 525‐531. https://doi.org/10.1080/02770903.2019.1590590; PMid:30929521
Dziublyk OIa. (2016). Nehospitalni infektsii nyzhnikh dykhalnykh shliakhiv. Vinnytsia: TOV «Merkiuri-Podillia»: 255.
EURO WHO. (2011). World health day 2011 antibiotic resistance no action today nocure tomorrow. Past themes of worldhealth day. URL: https://www.euro.who.int/ru/about-us/whd/past-themes-of-worldhealth-day/world-health-day-2011-antibiotic-resistance-no-action-today-nocure-tomorrow.
Feshchenko YuI, Dziublyk OIa. (2020). Nehospitalna pnevmoniia. K.: Samit-knyha: 468.
Firth A, Prathapan P. (2020). Azithromycin: The First Broad-spectrum Therapeutic. Eur J Med Chem. 1; 207: 112739. https://doi.org/10.1016/j.ejmech.2020.112739; PMid:32871342 PMCid:PMC7434625
Gerber JS. (2021). Antibiotic Stewardship in Pediatrics. 147 (1): e2020040295. https://doi.org/10.1542/peds.2020-040295; PMid:33372120
Ghimire JJ, Jat KR, Sankar J. (2022). Azithromycin for Poorly Controlled Asthma in Children: A Randomized Controlled Trial. Chest. 161 (6): 1456-1464. https://doi.org/10.1016/j.chest.2022.02.025; PMid:35202621
Hahn DL. (2022). Azithromycin Response in Uncontrolled Asthma in Children: Binary or Continuous? Chest. 162 (1): e61. https://doi.org/10.1016/j.chest.2022.02.055; PMid:35809954
Hardman SJ, Shackley FM, Ugonna K, Darton TC et al. (2023). Seasonal Azithromycin use in paediatric protracted bacterial bronchitis does not promote antimicrobial resistance but does modulate the nasopharyngeal microbiome. Int. J. Mol. Sci. 24: 16053. https://doi.org/10.3390/ijms242216053; PMid:38003242 PMCid:PMC10671346
Heidary M, Ebrahimi Samangani A, Kargari A, Kiani Nejad A, Yashmi I, Motahar M et al. (2022). Mechanism of action, resistance, synergism, and clinical implications of azithromycin. J Clin Lab Anal. 36 (6): e24427. https://doi.org/10.1002/jcla.24427; PMid:35447019 PMCid:PMC9169196
Hersh AL, Shapiro DJ, Pavia AT, Shah SS. (2011). Antibiotic prescribing in ambulatory pediatrics in the United States. Pediatrics. 128 (6): 1053-1061. https://doi.org/10.1542/peds.2011-1337; PMid:22065263
Hill AT, Sullivan AL, Chalmers JD et al. (2019). British Thoracic Society Guideline for bronchiectasis in adults. Thorax. 74 (S1): 1-69. https://doi.org/10.1136/thoraxjnl-2018-212463; PMid:30545985
Ivaska L, Barkoff AM, Mertsola J, He Q. (2022). Macrolide Resistance in Bordetella pertussis: Current Situation and Future Challenges. Antibiotics (Basel). 7; 11 (11): 1570. https://doi.org/10.3390/antibiotics11111570; PMid:36358225 PMCid:PMC9686491
Khaytovich, N. (2022). Rational Antibiotic Therapy of Respiratory Infections in Children. Child's health. (8.51): 139-146. https://doi.org/10.22141/2224-0551.8.51.2013.85052
Klingmann V, Vallet T, Münch J et al. (2023). Dosage Forms Suitability in Pediatrics: Acceptability of Antibiotics in a German Hospital. Antibiotics (Basel). 7; 12 (12): 1709. https://doi.org/10.3390/antibiotics12121709; PMid:38136743 PMCid:PMC10740640
Kobbernagel HE, Buchvald FF, Haarman EG et al. (2020). Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): A multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 8: 493-505. https://doi.org/10.1016/S2213-2600(20)30058-8; PMid:32380069
Kramariev S. (2021). Rational Antibiotic Therapy of Respiratory Tract Diseases in Сhildren. Child's health. (1.69): 114-118. https://doi.org/10.22141/2224-0551.1.69.2016.73728
Kramarov SO, Seriakova IYu. (2023). Azithromycin in the clinic of infectious diseases. Modern Pediatrics. Ukraine. 1 (129): 106-113. https://doi.org/10.15574/SP.2023.129.106
Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ et al. (2021, Oct). Nonantimicrobial actions of macrolides: overview and perspectives for future development. Pharm. Rev. 73: 1404-1433. https://doi.org/10.1124/pharmrev.121.000300; PMid:34716226
Langford BJ, So M, Raybardhan S, Leung V et al. (2021). Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 27 (4): 520-531. https://doi.org/10.1016/j.cmi.2020.12.018; PMid:33418017 PMCid:PMC7785281
Luisi F, Roza CA, Silveira VD et al. (2020). Azithromycin administered for acute bronchiolitis may have a protective effect on subsequent wheezing. J Bras Pneumol. 2; 46 (3): e20180376. https://doi.org/10.36416/1806-3756/e20180376; PMid:32130359 PMCid:PMC8650811
Martіnez-Gonzalez NA, Coenen S, Plate A et al. (2017). The impact of interventions to improve the quality of prescribing and use of antibiotics in primary care patients with respiratory tract infections: a systematic review protocol. BMJ Open. 7: e01625. https://doi.org/10.1136/bmjopen-2017-016253; PMid:28611111 PMCid:PMC5726136
McMullan BJ, Mostaghim M. (2015). Prescribing azithromycin. Aust Prescr. 38 (3): 87-89. https://doi.org/10.18773/austprescr.2015.030; PMid:26648627 PMCid:PMC4653965
Niankovskyi SL. (2019). Ratsionalna antybiotykoterapiia u ditei: suchasni rekomendatsii. Zdorov'ia Ukrainy. Tematychnyi nomer «Pediatriia». 3: 50.
Nori P, Cowman K, Chen V et al. (2021). Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect Control Hosp Epidemiol. 42 (1): 84-88. https://doi.org/10.1017/ice.2020.368; PMid:32703320 PMCid:PMC7417979
Paff T, Omran H, Nielsen KG, Haarman EG. (2021). Current and Future Treatments in Primary Ciliary Dyskinesia. Int. J. Mol. Sci. 22: 9834. https://doi.org/10.3390/ijms22189834; PMid:34575997 PMCid:PMC8470068
Pan X, Liu Y, Luo J et al. (2022). The efficacy and safety of azithromycin in treatment for childhood asthma: A systematic review and meta-analysis. Pediatr Pulmonol. 57 (3): 631-639. https://doi.org/10.1002/ppul.25783; PMid:34862766
Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ et al. (2014). Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 143 (2): 225-245. https://doi.org/10.1016/j.pharmthera.2014.03.003; PMid:24631273
Plewig G, Schopf E. (1975). Anti-inflammatory effects of antimicrobial agents: an in vivo study. J. Invest. Dermatol. 65 (6): 532-536. https://doi.org/10.1111/1523-1747.ep12610281; PMid:1194716
Salmanov AH. (2016). Stratehichnyi plan dii Ukrainy z profilaktyky infektsii, pov'iazanykh z nadanniam medychnoi dopomohy ta antymikrobnoi rezystentnosti. K.: Ahrar Media Hrup: 380.
Smieszek T, Pouwels KB, Dolk FCK et al. (2018). Potential for reducing inappropriate antibiotic prescribing in English primary care. J Antimicrob Chemother. 73: 36-43. https://doi.org/10.1093/jac/dkx500; PMid:29490058 PMCid:PMC5890667
Song G, Zhang Y, Yu S et al. (2023). Efficacy and safety of macrolides in the treatment of children with bronchiectasis: a meta-analysis. Pediatr Res. 94: 1600-1608. https://doi.org/10.1038/s41390-023-02591-5; PMid:37237074
Stokholm J, Chawes BL, Vissing NH et al. (2016). Azithromycin for episodes with asthma-like symptoms in young children aged 1-3 years: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 4 (1): 19-26. https://doi.org/10.1016/S2213-2600(15)00500-7; PMid:26704020
Sun J, Li Y. (2022). Long-term, low-dose macrolide antibiotic treatment in pediatric chronic airway diseases. Pediatr Res. 91: 1036-1042. https://doi.org/10.1038/s41390-021-01613-4; PMid:34120139 PMCid:PMC9122820
Swainston HT, Keam SJ. (2007). Azithromycin extended release: a review of its use in the treatment of acute bacterial sinusitis and community‐acquired pneumonia in the US. Drugs. 67: 773‐792. https://doi.org/10.2165/00003495-200767050-00010; PMid:17385947
Telegram-kanal «Pediatriia ta alerholohiia z Kryvopustovymy». URL: https://t.me/+rl336kEWUOAxNWJi.
Thomas D, Gibson PG. (2022). Long-term, low-dose Azithromycin for uncontrolled asthma in children. Chest. 162 (1): 27-29. https://doi.org/10.1016/j.chest.2022.03.035; PMid:35809932
Ukkonen RM, Renko M, Kuitunen I. (2023). Azithromycin for acute bronchiolitis and wheezing episodes in children - a systematic review with meta-analysis. Pediatr Res. 56: 58Z. https://doi.org/10.1038/s41390-023-02953-z; PMid:38066246
Ukuhor HO. (2021). The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health. 14 (1): 53-60. https://doi.org/10.1016/j.jiph.2020.10.018; PMid:33341485 PMCid:PMC7831651
Vallet T, Bensouda Y, Saito J et al. (2021). Exploring Acceptability Drivers of Oral Antibiotics in Children: Findings from an International Observational Study. Pharmaceutics. 13: 1721. https://doi.org/10.3390/pharmaceutics13101721; PMid:34684014 PMCid:PMC8537532
World Health Organisation. (2005). Antimicrobial resistance: a threat to global health security. URL: http://apps.who.int/iris/handle/10665/20247.
Yang J. (2020). Mechanism of azithromycin in airway diseases. J Int Med Res. 48 (6): 300060520932104. https://doi.org/10.1177/0300060520932104; PMid:32589092 PMCid:PMC7323306
Zeng L. (2020). Safety of azithromycin in pediatrics: a systematic review and analysis. Eur J Clin Pharmacol. 76 (12): 1709-1721. https://doi.org/10.1007/s00228-020-02956-3; PMid:32681202 PMCid:PMC7661415
Zimmermann P, Ziesenitz VC, Curtis N, Ritz N. (2018). The Immunomodulatory Effects of Macrolides-A Systematic Review of the Underlying Mechanisms. Front Immunol. 13; 9: 302. https://doi.org/10.3389/fimmu.2018.00302; PMid:29593707 PMCid:PMC5859047
Zupanets IA, Bezuhla NP, Lybina VV, Kudrys YV, Kuvaiskov YuH. (2013). Otsinka vzaiemozaminnosti Azymedu - bioekvivalentnist dovedena! Liky Ukrainy. 1 (167): 1-4.
Тsai TA, Tsai CK, Kuo KC, Yu HR. (2021). Rational stepwise approach for Mycoplasma pneumoniae pneumonia in children. J Microbiol Immunol Infect. 54 (4): 557-565. https://doi.org/10.1016/j.jmii.2020.10.002; PMid:33268306
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Modern pediatrics. Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The policy of the Journal “MODERN PEDIATRICS. UKRAINE” is compatible with the vast majority of funders' of open access and self-archiving policies. The journal provides immediate open access route being convinced that everyone – not only scientists - can benefit from research results, and publishes articles exclusively under open access distribution, with a Creative Commons Attribution-Noncommercial 4.0 international license (СС BY-NC).
Authors transfer the copyright to the Journal “MODERN PEDIATRICS. UKRAINE” when the manuscript is accepted for publication. Authors declare that this manuscript has not been published nor is under simultaneous consideration for publication elsewhere. After publication, the articles become freely available on-line to the public.
Readers have the right to use, distribute, and reproduce articles in any medium, provided the articles and the journal are properly cited.
The use of published materials for commercial purposes is strongly prohibited.