Congenital heart diseases: frequency, causes, predictors of placental and fetal disorders
DOI:
https://doi.org/10.15574/SP.2023.134.19Keywords:
congenital heart diseases, placenta, fetus, angiogenic placental factors, antiangiogenic placental factorsAbstract
Today, cardiovascular disease remains one of the main causes of morbidity, mortality and early disability in the population. Congenital heart diseases (CHD) is a leading cause of morbidity and mortality (up to 30%) and is one of the most severe conditions - multiple congenital malformations in children.
Purpose - to analyze the literature data on the frequency of CHD, their causes, characteristics of the functioning of the fetoplacental system, and the importance of placental factors as markers of placental-fetal disorders to improve the effectiveness of prenatal diagnosis of heart defects and provide specialized medical care to pregnant women.
A brief review of markers of early placental abnormalities and the development of heart defects, such as placental growth factor (PIGF), soluble form of fms-like tyrosine kinase-1 (sFlt-1), placental lactogen, and others, is provided. Given the significant proportion of fetoplacental insufficiency and CHD as the cause of perinatal losses, it is advisable to search for both genetic and morphological factors of their occurrence, which will improve prenatal diagnosis and the level of specialized care for pregnant women and children.
Conclusions. The provided review of the literature indicated the possible causes of the occurrence of CHD, highlighted the relevance of the problem, which is primarily associated with a significant frequency of cardiovascular pathology and violations of the relationship and functioning of the fetoplacental system. Among the causes of congenital heart defects, multifactorial pathology has the greatest specific weight, the solution of the problem of diagnosis of which requires the combined action of obstetric-gynecological, cardiology, medical-genetic and pathomorphological services.Determination of placental factors PlGF and sFlt-1 in the blood can be recommended as criteria for prenatal diagnosis of defects of the cardiovascular system.
No conflict of interests was declared by the authors.
References
Abdul-Oglyi LV. (2010). Morfogeneticheskie osobennosti razvitiya serdtsa i platsentyi v norme i pri narushenii ee formirovaniya. Visnik problem biologiyi i meditsini. 3: 231-237.
Antipkin YuG, Zadorozhnaya TD, Parnitskaya OI. (2016). Patologiya platsentyi (sovremennyie aspektyi). Kiev: OOO «Atopol»: 127.
Avramenko NV, Nikiforov OA, Suhonos EA i dr. (2013). Analiz chastotyi obnaruzheniya vrozhdennyih porokov serdtsa pri provedenii prenatalnoy diagnostiki v Zaporozhskoy oblasti. Zaporozhskiy meditsinskiy zhurnal. 3 (78): 5-8.
Binder J, Carta S, Carvalho JS, Kalafat E, Khalil A, Thilaganathan B. (2020). Evidence for uteroplacental malperfusion in fetuses with major congenital heart defects. PloS one. 15 (2): e0226741. https://doi.org/10.1371/journal.pone.0226741; PMid:32023263 PMCid:PMC7001956
Bokeriya LA, Stupakov IN, Gudkova RG. (2016). Congenital anomalies (defects) of the circulatory system in the Russian population and their surgical treatment (2005-2014). Grudnaya i serdechno-sosudistaya khirurgiya. 4: 202-206.
Camm EJ, Botting KJ, Sferruzzi-Perri AN. (2018). Near to one's heart: the intimate relationship between the placenta and fetal heart. Frontiers in physiology. 9: 629. https://doi.org/10.3389/fphys.2018.00629; PMid:29997513 PMCid:PMC6029139
Campanale CM, Pasquini L, Santangelo TP, Iorio FS, Bagolan P, Sanders SP, Toscano A. (2019, Jul). Prenatal echocardiographic assessment of right aortic arch. Ultrasound Obstet Gynecol. 54 (1): 96-102. https://doi.org/10.1002/uog.20098; PMid:30125417
Chai H, Yan Z, Huang K, Jiang Y, Zhang L. (2018). MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect. Molecular and cellular biochemistry. 439 (1-2): 171-187. https://doi.org/10.1007/s11010-017-3146-2; PMid:28822034
Chaithra S, Agarwala S, Ramachandra NB. (2022, Oct 5). High-risk genes involved in common septal defects of congenital heart disease. Gene. 840: 146745. Epub 2022 Jul 18. https://doi.org/10.1016/j.gene.2022.146745; PMid:35863714
De La Calle M, Delgado JL, Verlohren S, Escudero AI, Bartha JL, Campillos JM et al. (2021). Gestational Age-Specific Reference Ranges for the sFlt-1/PlGF Immunoassay Ratio in Twin Pregnancies. Fetal Diagn Ther. 48 (4): 288-296. Epub 2021 Mar 30. https://doi.org/10.1159/000514378; PMid:33784677 PMCid:PMC8117392
De Vivo A, Baviera G, Giordano D, Todarello G, Corrado F, D'anna R. (2008). Endoglin, PlGF and sFlt-1 as markers for predicting pre-eclampsia. Acta Obstet Gynecol Scand. 87 (8): 837-842. https://doi.org/10.1080/00016340802253759; PMid:18607829
Fantasia I, Andrade W, Syngelaki A, Akolekar R, Nicolaides KH. (2019). Impaired placental perfusion and major fetal cardiac defects. Ultrasounds in Obstetrics & Gynecology. 53 (1): 68-72. https://doi.org/10.1002/uog.20149; PMid:30334326
Findley TO, Crain AK, Mahajan S, Deniwar A, Davis J, Solis Zavala AS et al. (2022, Jan). Congenital heart defects and copy number variants associated with neurodevelopmental impairment. Am J Med Genet A. 188 (1): 13-23. Epub 2021 Sep 2. https://doi.org/10.1002/ajmg.a.62484; PMid:34472185
Fung A, Manlhiot C, Naik S et al. (2013). Impact of Prenatal Risk Factors on Congenital Heart Disease in the Current Era. J Am Heart Assoc. 2: e00006410. https://doi.org/10.1161/JAHA.113.000064; PMid:23727699 PMCid:PMC3698764
Galagan V et al. (2020). Genetic components of congenital heart defects in children. European journal of human genetics. 28; Suppl 1.
Garne E, Stoll C, Clementi M, Euroscan Group. (2001). Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries. Ultrasound Obstet. Gynecol. 17; 5: 386-391. https://doi.org/10.1046/j.1469-0705.2001.00385.x; PMid:11380961
Grill S, Rusterholz C, Zanetti-Dällenbach R, Tercanli S, Holzgreve W, Hahn S, Lapaire O. (2009). Potential markers of preeclampsia-a review. Reproductive biology and endocrinology. 7 (1): 1-14. https://doi.org/10.1186/1477-7827-7-70; PMid:19602262 PMCid:PMC2717076
Jayasena CN, Abbara A, Comninos AN, Narayanaswamy S, Maffe JG, Izzi-Engbeaya C et al. (2016). Novel circulating placental markers prokineticin-1, soluble fms-like tyrosine kinase-1, soluble endoglin and placental growth factor and association with late miscarriage. Human Reproduction. 31 (12): 2681-2688. https://doi.org/10.1093/humrep/dew225; PMid:27664209
Jeon HR, Jeong DH, Lee JY, Woo EY, Shin GT, Kim SY. (2021, Jul). sFlt-1/PlGF ratio as a predictive and prognostic marker for preeclampsia. J Obstet Gynaecol Res. 47 (7): 2318-2323. Epub 2021 May 10. https://doi.org/10.1111/jog.14815; PMid:33973302
Josowitz R, Linn R, Rychik J. (2023). The Placenta in Congenital Heart Disease: Form, Function and Outcomes. NeoReviews. 24 (9): e569-e582. https://doi.org/10.1542/neo.24-9-e569; PMid:37653088
Kardasevic M, Jovanovic I, Samardzic JP. (2016, Oct). Modern Strategy for Identification of Congenital Heart Defects in the Neonatal Period. Med Arch. 70 (5): 384-388. Epub 2016 Oct 25. https://doi.org/10.5455/medarh.2016.70.384-388; PMid:27994302 PMCid:PMC5136435
Kosharnyiy VV. Abdul-Oglyi LV, Demyanenko IA, Snisar ES. (2011). Morfogeneticheskie paralleli razvitiya serdtsa i platsentyi v norme i formirovanie porokov razvitiya serdtsa pri narushenii formirovaniya platsentyi. Visnik problem biologiyi i meditsini. 2 (2): 145-148.
Krasuski RA, Bashore TM. (2016). Congenital heart disease epidemiology in the United States: blindly feeling for the charging elephant. Circulation. 134.2: 110-113. https://doi.org/10.1161/CIRCULATIONAHA.116.023370; PMid:27382106
Lalani SR, Belmont JW. (2014). Genetic basis of congenital cardiovascular malformations. Eur J Med Genet. 57 (8): 402-413. https://doi.org/10.1016/j.ejmg.2014.04.010; PMid:24793338 PMCid:PMC4152939
Lawera A, Tong Z, Thorikay M, Redgrave RE, Cai J, Dinther M et al. (2019). Role of soluble endoglin in BMP9 signaling. Proceedings of the National Academy of Science of USA. 116 (36): 17800-17808. https://doi.org/10.1073/pnas.1816661116; PMid:31431534 PMCid:PMC6731690
Mahadevan A, Tipler A, Jones H. (2023, Sep 26). Shared developmental pathways of the placenta and fetal heart. Placenta. 141: 35-42. https://doi.org/10.1016/j.placenta.2022.12.006; PMid:36604258
Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. (2014). Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 130 (9): 749-756. https://doi.org/10.1161/CIRCULATIONAHA.113.008396; PMid:24944314
Marigorta UM, Navarro A. (2013). High trans-ethnic replicability of GWAS results implies common causal variants. PLoS genetics. 9.6: e1003566. https://doi.org/10.1371/journal.pgen.1003566; PMid:23785302 PMCid:PMC3681663
Maslen, Cheryl L. (2018). Recent Advances in Placenta - Heart Interactions. Frontiers in Physiology. 9: 735. https://doi.org/10.3389/fphys.2018.00735; PMid:29962966 PMCid:PMC6010578
Nejabati HR, Latifi Z, Ghasemnejad T, Fattahi A, Nouri M. (2017, Sep). Placental growth factor (PlGF) as an angiogenic/inflammatory switcher: lesson from early pregnancy losses. Gynecol Endocrinol. 33 (9): 668-674. Epub 2017 Apr 27. https://doi.org/10.1080/09513590.2017.1318375; PMid:28447504
Nussbaum R, McInnes RR, Willard HF. (2015). Thompson & Thompson genetics in medicine e-book. Elsevier Health Sciences.
Ou Y, Mai J, Zhuang J et al. (2016). Risk factors of different congenital heart defects in Guangdong, China. Pediatric research. 79: 549-558. https://doi.org/10.1038/pr.2015.264; PMid:26679154
Ozcan T, Kikano S, Plummer S, Strainic J, Ravishankar S. (2021, May-Jun). The Association of Fetal Congenital Cardiac Defects and Placental Vascular Malperfusion. Pediatr Dev Pathol. 24 (3): 187-192. Epub 2021 Jan 25. https://doi.org/10.1177/1093526620986497; PMid:33491545
Pang V, Bates DO, Leach L. (2017). Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A 165 a, VEGF-A 165 b, PIGF and VE-cadherin. Clinical Science. 131 (23): 2763-2775. https://doi.org/10.1042/CS20171252; PMid:29054861 PMCid:PMC5869853
Pavlova A, Gurjeva O, Kurkevych A, Rudenko N, Yemec I. (2018). Assessment of accuracy of echocardiographic parameters in prenatal diagnostics of isolated vascular ring. Ukrainian Journal of Cardiovascular Surgery. 4 (33): 60-63. https://doi.org/10.30702/ujcvs/18.33/15(060-063)
Pierpont ME, Brueckner M, Chung WK et al. (2018). Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. 138: 653. https://doi.org/10.1161/CIR.0000000000000606; PMid:30571578 PMCid:PMC6555769
Pishak VP, Ryznychuk MO. (2013). Analiz poshyrenosti pryrodzhenykh vad rozvytku u novonarodzhenykh Chernivetskoi oblasti za danymy henetychnoho monitorynhu. Ukraina. Zdorovia natsii. 1 (25): 28-32.
Ramhorst R, Calo G, Paparini D, Vota D, Hauk V, Gallino L et al. (2019, Feb). Control of the inflammatory response during pregnancy: potential role of VIP as a regulatory peptide. Ann NY Acad Sci. 1437 (1): 15-21. Epub 2018 May 8. https://doi.org/10.1111/nyas.13632; PMid:29740848
Rosamond W, Flegal K, Friday G et al. (2007). Heart disease and stroke statistics - 2007 update. Circulation. 115 (5): e69-e171. doi: 10.1161/CIRCULATIONAHA.106.179918. Erratum in Circulation. 115 (5):e172. Circulation. 2010 Jul 6; 122 (1): e9. https://doi.org/10.1161/CIRCULATIONAHA.106.179918
Rossberg N, Stangl K. (2016). Pregnancy and cardiovascular risk: A review focused on women with heart disease undergoing fertility treatment. Eur J Prev Cardiol. 17: 567-623.
Rychik J, Goff D, McKay E, Mott A, Tian Z, Licht DJ, Gaynor JW. (2018). Characterization of the Placenta in the Newborn with Congenital Heart Disease: Distinctions Based on Type of Cardiac Malformation. Pediatric Cardiology. 39 (6): 1165-1171. https://doi.org/10.1007/s00246-018-1876-x; PMid:29728721 PMCid:PMC6096845
Saito, Yoshihiko. (2021). The role of the PlGF/Flt-1 signaling pathway in the cardiorenal connection. Journal of Molecular and Cellular Cardiology. 151: 106-112. https://doi.org/10.1016/j.yjmcc.2020.10.001; PMid:33045252
Shabana NA, Shahid SU, Irfan U. (2020). Genetic Contribution to Congenital Heart Disease (CHD). Pediatric Cardiology. 41 (1): 12-23. https://doi.org/10.1007/s00246-019-02271-4; PMid:31872283
Su W, Zhu P, Wang R. (2017). Congenital heart diseasesand their assosiatrion with the variant distribution features on susceptibility genes. Clin. Genet. 91 (3): 349-354. https://doi.org/10.1111/cge.12835; PMid:27426723
Sun, Heather Y. (2021). Prenatal diagnosis of congenital heart defects: echocardiography. Translational pediatrics. 10.8: 2210. https://doi.org/10.21037/tp-20-164; PMid:34584892 PMCid:PMC8429868
Talalaiev KO, Babenko VA, Puchkova HV. (2017). Sposib zhyttia yak kliuchovyi chynnyk zdorovia natsii. Sotsialno-ekonomichnyi aspekt. Odeskyi medychnyi zhurnal. 6: 63-67.
Vranekovic J, Bozovic IB, Zivkovic M, Stankovic A, Milic BB. (2019). LINE-1 DNA Вmethylation and congenital heart defects in down syndrome. Molecular and experimental biology in medicine. 2 (1): 34-37. https://doi.org/10.33602/mebm.2.1.6
Warrington NM, Beaumont RN, Horikoshi M et al. (2019). Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics. 51: 804-814.
Weckman AM, Ngai M, Wright J, McDonald CR, Kain KC. (2019). The Impact of Infection in Pregnancy on Placental Vascular Development and Adverse Birth Outcomes. Frontiers in Microbiology. 10: e1924. https://doi.org/10.3389/fmicb.2019.01924; PMid:31507551 PMCid:PMC6713994
Yoo SA, Kim M, Kang MC, Kong JS, Kim KM, Lee S, Kim WU. (2019). Placental growth factor regulates the generation of TH17 cells to link angiogenesis with autoimmunity. Nature Immunology. 20 (10): 1348-1359. https://doi.org/10.1038/s41590-019-0456-4; PMid:31406382
Zaidi S, Brueckner M. (2017). Genetics and Genomics of Congenital Heart Disease. Circulation Research. 120 (6): 923-940. https://doi.org/10.1161/CIRCRESAHA.116.309140; PMid:28302740 PMCid:PMC5557504
Zarrei M, MacDonald JR, Merico D, Scherer SW. (2015). A copy number variation map of the human genome. Nat Rev Genet. 16 (3): 172-183. https://doi.org/10.1038/nrg3871; PMid:25645873
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Modern pediatrics. Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The policy of the Journal “MODERN PEDIATRICS. UKRAINE” is compatible with the vast majority of funders' of open access and self-archiving policies. The journal provides immediate open access route being convinced that everyone – not only scientists - can benefit from research results, and publishes articles exclusively under open access distribution, with a Creative Commons Attribution-Noncommercial 4.0 international license (СС BY-NC).
Authors transfer the copyright to the Journal “MODERN PEDIATRICS. UKRAINE” when the manuscript is accepted for publication. Authors declare that this manuscript has not been published nor is under simultaneous consideration for publication elsewhere. After publication, the articles become freely available on-line to the public.
Readers have the right to use, distribute, and reproduce articles in any medium, provided the articles and the journal are properly cited.
The use of published materials for commercial purposes is strongly prohibited.