Tolerance to physical activity and its changes in children after COVID-19 (literature review, own data)

Authors

DOI:

https://doi.org/10.15574/SP.2022.125.108

Keywords:

post-COVID-19, tolerance to physical activity, cycle ergometer, maximal VO2, quality of life, children

Abstract

The issue of long-term consequences of the transferred COVID-19 is increasingly being raise in connection with the pandemic of COVID-19. The problem of changes in the functional state of the body, health and improving the quality of life of children who have infected COVID-19 is relevant. To analyze these parameters, it is advisable to use the assessment of tolerance to physical activity. Tolerance to physical activity is a total indicator of the body’s physiological capabilities, which allows you to assess the processes of oxygen consumption by the myocardium and myocardial reserves, which are important in the overall adaptation of the body. The «gold standard» of assessing tolerance to physical activity is the determination of the maximum VO2, and other indicators, the control of which in dynamics will allow the development of medical and rehabilitation measures aimed at the elimination of post-COVID symptoms.

The authors declared no conflict of interest.

References

American Thoracic Society; American College of Chest Physicians. (2003). ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 167 (2): 211-277. https://doi.org/10.1164/rccm.167.2.211; PMid:12524257

Ariestika E, Widiyanto W, Nanda FA. (2020). Physical activities and vo2 max: Indonesian national team, is there a difference before and after covid-19? Jurnal SPORTIF: Jurnal Penelitian Pembelajaran. 6 (3): 763-778.

Baratto C, Caravita S, Faini A, Perego GB, Senni M, Badano LP, Parati G. (2021). Impact of COVID-19 on exercise pathophysiology: a combined cardiopulmonary and echocardiographic exercise study. Journal of applied physiology (Bethesda, Md. : 1985). 130 (5): 1470-1478. https://doi.org/10.1152/japplphysiol.00710.2020; PMid:33764166 PMCid:PMC8143785

Brackel CL, Lap CR, Buddingh EP, van Houten MA, van der Sande LJ, Langereis EJ, Terheggen‐Lagro SW. (2021). Pediatric long‐COVID: An overlooked phenomenon? Pediatric Pulmonology. 56 (8): 2495-2502. https://doi.org/10.1002/ppul.25521; PMid:34102037 PMCid:PMC8242715

Buonsenso D, Munblit D, De Rose C, Sinatti D, Ricchiuto A, Carfi A, Valentini P. (2021). Preliminary evidence on long COVID in children. Acta paediatrica (Oslo, Norway : 1992). 110 (7): 2208-2211. https://doi.org/10.1111/apa.15870; PMid:33835507 PMCid:PMC8251440

Burstein DS, Edelson J, O'Malley S, McBride MG, Stephens P, Paridon S, Brothers JA. (2022). Cardiopulmonary Exercise Performance in the Pediatric and Young Adult Population Before and During the COVID-19 Pandemic. Pediatric Cardiology: 1-6. https://doi.org/10.1007/s00246-022-02920-1; PMCid:PMC9062635

Buttar KK, Saboo N, Kacker S. (2019). A review: Maximal oxygen uptake (VO2 max) and its estimation methods. IJPESH. 6: 24-32.

Cade WT, Bohnert KL, Reeds DN, Peterson LR, Bittel AJ, Bashir A, Taylor CL. (2018). Peak oxygen uptake (VO2peak) across childhood, adolescence and young adulthood in Barth syndrome: Data from cross-sectional and longitudinal studies. PLoS One. 13 (5): e0197776. https://doi.org/10.1371/journal.pone.0197776; PMid:29795646 PMCid:PMC5967725

Carfì A, Bernabei R, Landi F, Gemelli Against COVID-19 Post-Acute Care Study Group. (2020). Persistent Symptoms in Patients After Acute COVID-19. JAMA. 324 (6): 603-605. https://doi.org/10.1001/jama.2020.12603; PMid:32644129 PMCid:PMC7349096

Centers for disease control and prevention (CDC). (2021). Evaluating and Caring for Patients with Post-COVID Conditions: Interim Guidance. URL: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-assessment-testing.html.

Dayton JD, Ford K, Carroll SJ, Flynn PA, Kourtidou S, Holzer RJ. (2021). The deconditioning effect of the COVID-19 pandemic on unaffected healthy children. Pediatric cardiology. 42 (3): 554-559. https://doi.org/10.1007/s00246-020-02513-w; PMid:33394120 PMCid:PMC7780912

Fernández-de-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Cuadrado ML, Florencio LL. (2021). Defining post-COVID symptoms (post-acute COVID, long COVID, persistent post-COVID): an integrative classification. International journal of environmental research and public health. 18 (5): 2621. https://doi.org/10.3390/ijerph18052621; PMid:33807869 PMCid:PMC7967389

Fernández-de-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Florencio LL, Cuadrado ML, Plaza-Manzano G, Navarro-Santana M. (2021). Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. European journal of internal medicine. 92: 55-70. https://doi.org/10.1016/j.ejim.2021.06.009; PMid:34167876 PMCid:PMC8206636

Ferreira EVM, Oliveira RK. (2021). Mechanisms of exercise intolerance after COVID-19: new perspectives beyond physical deconditioning. Jornal Brasileiro de Pneumologia: 47.

Green S, Askew C. (2018). VO2peak is an acceptable estimate of cardiorespiratory fitness but not VO2max. Journal of Applied Physiology. https://doi.org/10.1152/japplphysiol.00850.2017; PMid:29420148

Greenhalgh T, Knight M, Buxton M, Husain L. (2020). Management of post-acute covid-19 in primary care. Bmj: 370. https://doi.org/10.1136/bmj.m3026; PMid:32784198

Hanff TC, Harhay MO, Brown TS, Cohen JB, Mohareb AM. (2020). Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clinical Infectious Diseases. 71 (15): 870-874. https://doi.org/10.1093/cid/ciaa329; PMid:32215613 PMCid:PMC7184340

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Pöhlmann S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181 (2): 271-280. https://doi.org/10.1016/j.cell.2020.02.052; PMid:32142651 PMCid:PMC7102627

Hyshchak TV. (2015). Ctan tolerantnosti sertsevo-sudynnoi systemy do fizychnoho navantazhennia ta kharakterystyka miokardialnykh rezerviv za rezultatamy veloerhometrychnoi proby v ditei z pervynnoiu arterialnoiu hipertenziieiu. Aktualni pytannia pediatrii, akusherstva ta hinekolohii. 1: 22-25. https://doi.org/10.11603/24116-4944.2015.1.4660

Jankowski M, Niedzielska A, Brzezinski M, Drabik J. (2015). Cardiorespiratory fitness in children: a simple screening test for population studies. Pediatric cardiology. 36 (1): 27-32. https://doi.org/10.1007/s00246-014-0960-0; PMid:25070386 PMCid:PMC4284398

Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, Hsueh PR. (2020). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection. 53 (3): 404-412. https://doi.org/10.1016/j.jmii.2020.02.012; PMid:32173241 PMCid:PMC7128959

Lambert H, Gupte J, Fletcher H, Hammond L, Lowe N, Pelling M, Shanks K. (2020). COVID-19 as a global challenge: towards an inclusive and sustainable future. The Lancet Planetary Health. 4 (8): e312-e314. https://doi.org/10.1016/S2542-5196(20)30168-6

Li Z, Huang Y, Guo X. (2020). The brain, another potential target organ, needs early protection from SARS-CoV-2 neuroinvasion. Science China. Life Sciences. 63 (5): 771. https://doi.org/10.1007/s11427-020-1690-y; PMid:32246403 PMCid:PMC7118308

Ludvigsson JF. (2021). Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta paediatrica (Oslo, Norway : 1992). 110 (3): 914-921. https://doi.org/10.1111/apa.15673; PMid:33205450 PMCid:PMC7753397

Maly VP, Asoyan IM, Sai IV, Andrusovych IV. (2020). Patohenez koronavirusnoi infektsii COVID-19. Infektsiini khvoroby. 3: 73-83. https://doi.org/10.11603/1681-2727.2020.3.11555

Marshall M. (2020). The lasting misery of coronavirus long-haulers. Nature. 585 (7825): 339-342. https://doi.org/10.1038/d41586-020-02598-6; PMid:32929257

Marushko Y, Hyshchak T, Marushko T, Onufriev O, Zlobynets A, Khomych O, Moskovenko O. (2020). Health-related quality of life in pediatric patients with high-normal blood pressure and primary arterial hypertension. Family Medicine & Primary Care Review. 22 (4): 291-296. https://doi.org/10.5114/fmpcr.2020.100433

Marushko YuV, Kostynskaia NH, Hyshchak TV. (2021). Tolerantnist do fizychnoho navantazhennia pry arterialnii hipertenzii v ditei shkilnoho viku zalezhno vid masy tila. Zaporozhskyi medytsynskyi zhurnal. 23 (4): 509-515. https://doi.org/10.14739/2310-1210.2021.4.227348

Marushko YV, Hyschak TV, Zlobynets AS, Boiko NS. (2016). Rezultaty veloerhometrychnoi proby u ditei z pervynoiu arterialnoiu hipertenziieiu na foni kompleksnoho likuvannia iz zastosuvanniam Mahne-B6. Vrachebnoe delo. 5-6 (1139): 137-145.

Marushko YV, Hyschak TV. (2014). Diagnostic and correction problem of reduced exercise tolerance in school age children. Sovremennaya pedyatriya. 7(63): 34-40. https://doi.org/10.15574/SP.2014.63.34

Marushko YV, Hyschak TV. (2014). Systemni mekhanizmy adaptatsii. Stres u ditei. Monohrafiia. Kyiv: 138.

Marushko YV, Hyschak TV. (2017). Osoblyvosti funktsionalnykh rezerviv sertsevo-sudynnoi systemy za rezultatamy veloerhometrii u ditei z pervynnoiu arterialnoiu hipertenziieiu i defitsytom mahniiu ta vyiavlenykh porushen. Sovremennaia pedyatryia. 1 (81): 92-98. doi 10.15574/SP.2017.81.92.

National Institute for Health and Care Excellence (NICE), Scottish Intercollegiate Guidelines Network (SIGN) and Royal College of General Practitioners (RCGP). (2022). COVID-19 rapid guideline: managing the longterm effects of COVID-19. URL: https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742.

National Institute for Health and Care Excellence (NICE). (2020). COVID-19 guideline scope: management of the long-term effects of COVID-19. URL: https://www.nice.org.uk/guidance/ng188/documents/final-scope.

Pennington C, Kinesiology MS. (2015). The exercise effect on the anaerobic threshold in response to graded exercise. International Journal of Health Sciences. 3 (1): 225-234. https://doi.org/10.15640/ijhs.v3n1a14

Price S, Wiecha S, Cieśliński I, Śliż D, Kasiak PS, Lach J, Mamcarz A. (2022). Differences between treadmill and cycle ergometer cardiopulmonary exercise testing results in triathletes and their association with body composition and body mass index. International Journal of Environmental Research and Public Health. 19 (6): 3557. https://doi.org/10.3390/ijerph19063557; PMid:35329246 PMCid:PMC8955092

Raghuveer G, Hartz J, Lubans DR, Takken T, Wiltz JL, Mietus-Snyder M, American Heart Association Young Hearts Athero, Hypertension and Obesity in the Young Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young. (2020). Cardiorespiratory fitness in youth: an important marker of health: a scientific statement from the American Heart Association. Circulation. 142 (7): e101-e118. https://doi.org/10.1161/CIR.0000000000000866; PMid:32686505 PMCid:PMC7524041

Rinaldo RF, Mondoni M, Parazzini EM, Baccelli A, Pitari F, Brambilla E, Centanni S. (2021). Severity does not impact on exercise capacity in COVID-19 survivors. Respiratory Medicine. 187: 106-577. https://doi.org/10.1016/j.rmed.2021.106577; PMid:34416618 PMCid:PMC8364146

Rinaldo RF, Mondoni M, Parazzini EM, Pitari F, Brambilla E, Luraschi S, Centanni S. (2021). Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. European Respiratory Journal. 58: 2. https://doi.org/10.1183/13993003.00870-2021; PMid:33926969 PMCid:PMC8082950

Rubin R. (2020). As Their Numbers Grow, COVID-19 «Long Haulers» Stump Experts. JAMA. 324 (14): 1381-1383. https://doi.org/10.1001/jama.2020.17709; PMid:32965460

Rusdiana A. (2020). Analysis differences of Vo2max between direct and indirect measurement in badminton, cycling and rowing. International Journal of Applied Exercise Physiology. 9 (3): 162-170.

Santtila M, Häkkinen K, Pihlainen K, Kyröläinen H. (2013). Comparison between direct and predicted maximal oxygen uptake measurement during cycling. Military medicine. 178 (2): 234-238. https://doi.org/10.7205/MILMED-D-12-00276; PMid:23495472

Sanyaolu A, Marinkovic A, Prakash S, Zhao A, Balendra V, Haider N, Okorie C. (2022). Post-acute Sequelae in COVID-19 Survivors: an Overview. SN Comprehensive Clinical Medicine. 4 (1): 1-12. https://doi.org/10.1007/s42399-022-01172-7; PMid:35411333 PMCid:PMC8985741

Singh I, Joseph P, Heerdt PM, Cullinan M, Lutchmansingh DD, Gulati M, Waxman AB. (2022). Persistent exertional intolerance after COVID-19: insights from invasive cardiopulmonary exercise testing. Chest. 161 (1): 54-63. https://doi.org/10.1016/j.chest.2021.08.010; PMid:34389297 PMCid:PMC8354807

Sykes DL, Holdsworth L, Jawad N, Gunasekera P, Morice AH, Crooks MG. (2021). Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? Lung. 199 (2): 113-119. https://doi.org/10.1007/s00408-021-00423-z; PMid:33569660 PMCid:PMC7875681

Tenforde MW, Kim SS, Lindsell CJ, Rose EB, Shapiro NI, Files DC, IVY Network Investigators. (2020). Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network-United States, March-June 2020. Morbidity and Mortality Weekly Report. 69 (30): 993. https://doi.org/10.15585/mmwr.mm6930e1; PMid:32730238 PMCid:PMC7392393

Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Moch H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet. 395 (10234): 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5

Zimmermann P, Pittet LF, Curtis N. (2021). How common is long COVID in children and adolescents? The Pediatric infectious disease journal. 40 (12): e482. https://doi.org/10.1097/INF.0000000000003328; PMid:34870392 PMCid:PMC8575095

Published

2022-09-30