Diagnosed changes of bone mineral density and level of calciotropic hormones in children with juvenile hyperthyroidism

Authors

  • S.T. Muratova Republican Specialized Scientific-Practical Medical Center of Endocrinology named after academician Ya.Kh.Turakulov, Tashkent, Uzbekistan, Uzbekistan https://orcid.org/0000-0001-7736-7319

DOI:

https://doi.org/10.15574/SP.2021.115.23

Keywords:

juvenile hyperthyroidism, children, adolescents, bone mineral density, dual energy X-ray absorptiometry, osteocalcin, vitamin D

Abstract

The development of the skeletal system occur during childhood. Thyroid hormones play an important role in the skeleton's maturation and maintenance of the structure and mass of bones. Juvenile hyperthyroidism affects bone metabolism.

This study aimed to identify abnormalities in bone mineral density and the level of calciotropic hormones in juvenile hyperthyroidism to further improve the diagnosis of complications of juvenile hyperthyroidism.

Materials and methods. The study was conducted by 21 health controls and 71 children and adolescents with juvenile hyperthyroidism. Anthropometric indicators were calculated using the WHO Anthro Plus personal computer software. Thyroid status and thyroid antibodies, osteocalcin, parathyroid hormone, vitamin D, calcium, phosphorus, alkaline phosphatase were determined using a closed-type immunochemistry analyzer Cobas e 411 Hitachi company Hoffman Le Roche (Switzerland) and its reagents. Bone mineral density was evaluated by dual-energy absorptiometry on a Stratos X-ray densitometer from Diagnostic Medical Systems, France.

Results. In juvenile hypertrichosis, in comparison with the control, significantly low values of vitamin D and calcium in the blood serum were noted, the mean values of osteocalcin and alkaline phosphatase were substantially higher. There was no significant difference in the levels of parathyroid hormone and phosphorus in the blood serum in the compared groups. In 45.1% of patients, a decrease in bone mass was diagnosed compared to the age norm. A reliable direct correlation of vitamin D and calcium with bone density was revealed in all X-ray densitometry parameters and a reliable inverse correlation of osteocalcin, alkaline phosphatase and bone mineral density. Osteocalcin had a stronger inverse correlation with all dual-energy X-ray absorptiometry parameters and became a better biomarker than alkaline phosphatase.

Conclusions. There is a decrease in bone mineral density in children with juvenile hyperthyroidism. Changes in the level of calciotropic hormones indicate a deranged bone metabolism. Serum osteocalcin can be used as a biomarker of bone metabolism in children with juvenile hyperthyroidism. It is recommended to assess the bones' condition during the initial examination of children with juvenile hyperthyroidism.

The study was carried out following the principles of the Declaration of Helsinki. The study protocol was approved by the Local Ethics Committee of the participating institution. The informed consent of the parents of the children was obtained for the research.

The author declares no conflicts of interest.

References

Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, Iqbal J, Eldeiry L, Rajendren G, Blair HC, Davies TF, Zaidi M. (2003). TSH is a negative regulator of skeletal remodeling. Cell. 115 (2): 151-162. https://doi.org/10.1016/S0092-8674(03)00771-2

Ale AO, Odusan OO, Afe TO, Adeyemo OL, Ogbera AO. (2019). Bone fractures among adult Nigerians with hyperthyroidism: Risk factors, pattern and frequency. Journal of Endocrinology, Metabolism and Diabetes of South Africa. 24 (1): 28-31. https://doi.org/10.1080/16089677.2018.1541669

Barnard JC, Williams AJ, Rabier B, Chassande O, Samarut J, Cheng SY, Bassett JH, Williams GR. (2005). Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis. Endocrinology. 146: 5568-5580. https://doi.org/10.1210/en.2005-0762; PMid:16150908

Bassett JH, Williams GR. (2016). Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr Rev. 37 (2): 135-187. https://doi.org/10.1210/er.2015-1106; PMid:26862888 PMCid:PMC4823381

Belaya ZhE, Rozhinskaya LYa, Melnichenko GA. (2006). Sovremennyie predstavleniya o deystvii tireoidnyih gormonov i tireotropnogo gormona na kostnuyu tkan. Problemyi Endokrinologii. 52 (2): 48-54. doi 10.14341/probl200652248-54.

Cardoso LF, Maciel LM, de Paula FJ. (2014). The multiple effects of thyroid disorders on bone and mineral metabolism. Arq Bras Endocrinol Metab. 58 (5): 452-463. https://doi.org/10.1590/0004-2730000003311; PMid:25166035

Chawla R, Alden TD, Bizhanova A, Kadakia R, Brickman W, Kopp PA. (2015). Squamosal suture craniosynostosis due to hyperthyroidism caused by an activating thyrotropin receptor mutation (T632I). Thyroid. 25: 1167-1172. https://doi.org/10.1089/thy.2014.0503; PMid:26114856

Chiamolera MI, Wondisford FE. (2009). Minireview: Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology. 150 (3): 1091-1096. https://doi.org/10.1210/en.2008-1795; PMid:19179434

Delitala AP, Scuteri A, Doria C. (2020). Thyroid Hormone Diseases and Osteoporosis. Journal of Clinical Medicine. 9 (4): 1034. https://doi.org/10.3390/jcm9041034; PMid:32268542 PMCid:PMC7230461

Gabel L, Macdonald HM, McKay HA. (2016). Reply to: Challen gesin the Acquisition and Analysis of Bone Microstructure During Growth. J Bone Miner Res. 31 (12): 2242-2243. https://doi.org/10.1002/jbmr.3010; PMid:27704623

Golden NH, Abrams SA. (2014). Optimizing bone health in children and adolescents. Pediatrics. 134 (4): e1229-e1243. https://doi.org/10.1542/peds.2014-2173; PMid:25266429

Hase H, Ando T, Eldeiry L, Brebene A, Peng Y, Liu L, Amano H, Davies TF, Sun L, Zaidi M, Abe E. (2006). TNFalpha mediates the skeletal effects of thyroid-stimulating hormone. Proc Natl Acad Sci USA. 103 (34): 12849-12854. https://doi.org/10.1073/pnas.0600427103; PMid:16908863 PMCid:PMC1568936

Lee HS, Rho JG, Kum CD, Lim JS, Hwang JS. (2020). Low Bone Mineral Density at Initial Diagnosis in Children and Adolescents with Graves' Disease. J Clin Densitom. 21: S1094-6950 (20) 30087-1. https://doi.org/10.1016/j.jocd.2020.05.006; PMid:32546346

Liu H, Ma Q, Han X, Huang W. (2020). Bone mineral density and its correlation with serum 25-hydroxyvitamin D levels in patients with hyperthyroidism. Journal of International Medical Research. 48 (2): 1-7. https://doi.org/10.1177/0300060520903666; PMid:32043416 PMCid:PMC7111038

Mansurova GSh, Maltsev SV. (2017). Osteoporoz u detey - rol kaltsiya i vitamina D v profilaktike i terapii. Prakticheskaya meditsina. 5 (106): 55-59. URL: https://cyberleninka.ru/article/n/osteoporoz-u-detey-rol-kaltsiya-i-vitamina-d-v-profilaktike-i-terapii.

Marushko YuV, Polkovnichenko LN, Tarinskaya OL. (2014). Kaltsiy i ego rol v detskom organizme (obzor literaturyi). Sovremennaya pediatriya. 5 (61): 46-50. URL: http://nbuv.gov.ua/UJRN/Sped_2014_5_12.

Mhaibes SH, Ameen IA, Saleh ES, Taha KN, Kamil HS. (2019). Impact of Hyperthyroidism on Biochemical Markers of Bone Metabolism, Journal of Clinical and Diagnostic Research. 13 (7): BC11-BC14. https://doi.org/10.7860/JCDR/2019/41445.13011

Muratova ShT, Alimov AV. (2021). Metabolicheskie narusheniya pri gipertireoze u detey i podrostkov v usloviyah yododefitsita Respubliki Uzbekistan. Problemyi biologii i meditsinyi. 1,1 (126): 202-205. URL: https://www.sammi.uz/upload/images/2021/01/pbim-126-no11-2021-konferencia1.pdf.

Muratova ShT. (2018). Osteoporoz kak oslozhnenie tireotoksikoza. Pediatricheskie aspektyi. Nauchno-prakticheskiy zhurnal Pediatriya. 2: 61-65.

Murphy E, Williams GR. (2004). The thyroid and the skeleton. J Clin Endocrinol. 61: 285-298. https://doi.org/10.1111/j.1365-2265.2004.02053.x; PMid:15355444

Nicholls JJ, Brassill MJ, Williams GR, Bassett JH. (2012). The skeletal consequences of thyrotoxicosis. J Endocrinol. 213: 209-221. https://doi.org/10.1530/JOE-12-0059; PMid:22454529

Numbenjapon N, Costin G, Pitukcheewanont P. (2012). Normalization of cortical bone density in children and adolescents with hyperthyroidism treated with antithyroid medication. Osteoporos Int. 23: 2277-2282. https://doi.org/10.1007/s00198-011-1867-8; PMid:22187007

Rasmussen SA, Yazdy MM, Carmichael SL, Jamieson DJ, Canfield MA, Honein MA. (2007). Maternal thyroid disease as a risk factor for craniosynostosis. Obstet Gynecol. 110: 369-377. https://doi.org/10.1097/01.AOG.0000270157.88896.76; PMid:17666613

Skripnikova IA, Scheplyagina LA, Novikov VE i dr. (2015). Vozmozhnosti kostnoy rentgenovskoy densitometrii v klinicheskoy praktike. Metodicheskie rekomendatsii. Izdanie vtoroe, pererabotannoe. Moskva. URL: https://gnicpm.ru/wp-content/uploads/2015/04/metod.rekomendacii_densitometria-1.pdf.

Tanner JM. (1985). Clinical longitudinal standards for height and height velocity for North American children. J Pediatr. 107 (3): 317-329. https://doi.org/10.1016/S0022-3476(85)80501-1

Tseluyko SS, Krasavina NP, Semenov DA. (2019). Regeneratsiya tkaney: uchebnoe posobie. Ispravlennoe i dopolnennoe. Blagoveschensk. URL: https://www.amursma.ru/upload/iblock/f3f/Regeneraciya_tkanej.pdf.

Tsevis K, Trakakis E, Pergialiotis V, Alhazidou E, Peppa M, Chrelias C. (2018). The influence of thyroid disorders on bone density and biochemical markers of bone metabolism. Horm Mol Biol Clin Investig. 35: 1. https://doi.org/10.1515/hmbci-2018-0039; PMid:30218603

Tuchendler D, Bolanowski M. (2014). The influence of thyroid dysfunction on bone metabolism. Thyroid Res: 7, 12. https://doi.org/10.1186/s13044-014-0012-0; PMid:25648501 PMCid:PMC4314789

WHO. (2021). World Health Organization. URL: https://www.who.int/growthref/tools/WHO_AnthroPlus_setup.exe?ua=1.

Williams GR, Bassett JHD. (2018). Thyroid diseases and bone health. J Endocrinol Invest. 41 (1): 99-109. https://doi.org/10.1007/s40618-017-0753-4; PMid:28853052 PMCid:PMC5754375

Published

2021-04-27

Issue

Section

Original articles